Polynomial Regression
Below is an example of doing linear and poynomial regression in R. The "lm()" function in R is very flexible and allows Nth order polynomials of multiple predictor variables to be used for the model.
######################################################### # Script to explore data with histograms, scatter plots, # and regression # Author: Jim Grama # Date: 4/24/2012 ######################################################### # Remove any NA (null) values, the data should already be loaded Redwood_CA_Predictors=na.omit(Redwood_CA_Predictors) # Make the dataset the default so we don't have to specify the dataframe attach(Redwood_CA_Predictors) # Histogram the height values hist(HT,probability=TRUE,main="Tree Height",breaks=400) # Histogram the diameter values hist(DIA,probability=TRUE,main="Tree Daimeter",breaks=400) # Histogram the precipitation values hist(AnnualPrecip,probability=TRUE,main="Tree Precip",breaks=400) # Histogram the mean temperature values hist(MeanTemp,probability=TRUE,main="Tree Mean Temp",breaks=400) # Plot the height values against the diameter values plot(HT~DIA,main="Height vs. Diameter") # Add a linear regression line to the plot RegressionModel=lm(HT~DIA) abline(RegressionModel,col="red") # Create a thrid order polynomial regression RegressionModel=lm(HT~DIA+ I(DIA^2) + I(DIA^3)) # Create a response vector based on the model ResponsePrediction=predict(RegressionModel) # Add the response to the plot points(DIA, ResponsePrediction, type="p", col="red", lwd=2)
Other Resources
Presence-Absence Package Documentation