
Use R!
Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

Use R!

Albert: Bayesian Computation with R
Bivand/Pebesma/Gómez-Rubio: Applied Spatial Data Analysis with R
Cook/Swayne: Interactive and Dynamic Graphics for Data Analysis:

With R and GGobi
Hahne/Huber/Gentleman/Falcon: Bioconductor Case Studies
Paradis: Analysis of Phylogenetics and Evolution with R
Pfaff: Analysis of Integrated and Cointegrated Time Series with R
Sarkar: Lattice: Multivariate Data Visualization with R
Spector: Data Manipulation with R

Roger S. Bivand • Edzer J. Pebesma
Virgilio Gómez-Rubio

Applied Spatial Data
Analysis with R

ABC

Roger S. Bivand
Norwegian School of Economics
and Business Administration
Breiviksveien 40
5045 Bergen
Norway

Edzer J. Pebesma
University of Utrecht
Department of Physical Geography
3508 TC Utrecht
Netherlands

Virgilio Gómez-Rubio
Department of Epidemiology
and Public Health
Imperial College London
St. Mary’s Campus
Norfolk Place
London W2 1PG
United Kingdom

Series Editors:
Robert Gentleman
Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N, M2-B876
Seattle, Washington 98109-1024
USA

Giovanni Parmigiani
The Sidney Kimmel Comprehensive Cancer
Center at Johns Hopkins University
550 North Broadway
Baltimore, MD 21205-2011
USA

Kurt Hornik
Department für Statistik und Mathematik
Wirtschaftsuniversität Wien Augasse 2-6
A-1090 Wien
Austria

ISBN 978-0-387-78170-9 e-ISBN 978-0-387-78171-6
DOI 10.1007/978-0-387-78171-6

Library of Congress Control Number: 2008931196

c© 2008 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

springer.com

Ewie

Voor Ellen, Ulla en Mandus

A mis padres, Victorina y Virgilio Benigno

Preface

We began writing this book in parallel with developing software for handling
and analysing spatial data with R (R Development Core Team, 2008). Al-
though the book is now complete, software development will continue, in the
R community fashion, of rich and satisfying interaction with users around the
world, of rapid releases to resolve problems, and of the usual joys and frustra-
tions of getting things done. There is little doubt that without pressure from
users, the development of R would not have reached its present scale, and the
same applies to analysing spatial data analysis with R.

It would, however, not be sufficient to describe the development of the
R project mainly in terms of narrowly defined utility. In addition to being a
community project concerned with the development of world-class data analy-
sis software implementations, it promotes specific choices with regard to how
data analysis is carried out. R is open source not only because open source
software development, including the dynamics of broad and inclusive user and
developer communities, is arguably an attractive and successful development
model.

R is also, or perhaps chiefly, open source because the analysis of empirical
and simulated data in science should be reproducible. As working researchers,
we are all too aware of the possibility of reaching inappropriate conclusions
in good faith because of user error or misjudgement. When the results of
research really matter, as in public health, in climate change, and in many
other fields involving spatial data, good research practice dictates that some-
one else should be, at least in principle, able to check the results. Open source
software means that the methods used can, if required, be audited, and jour-
nalling working sessions can ensure that we have a record of what we actually
did, not what we thought we did. Further, using Sweave1 – a tool that permits
the embedding of R code for complete data analyses in documents – through-
out this book has provided crucial support (Leisch, 2002; Leisch and Rossini,
2003).

1 http://www.statistik.lmu.de/~leisch/Sweave/.

VIII Preface

We acknowledge our debt to the members of R-core for their continu-
ing commitment to the R project. In particular, the leadership and example
of Professor Brian Ripley has been important to us, although our admitted
‘muddling through’ contrasts with his peerless attention to detail. His inter-
ested support at the Distributed Statistical Computing conference in Vienna
in 2003 helped us to see that encouraging spatial data analysis in R was a
project worth pursuing. Kurt Hornik’s dedication to keep the Comprehensive
R Archive Network running smoothly, providing package maintainers with
superb, almost 24/7, service, and his dry humour when we blunder, have
meant that the useR community is provided with contributed software in an
unequalled fashion. We are also grateful to Martin Mächler for his help in
setting up and hosting the R-Sig-Geo mailing list, without which we would
have not had a channel for fostering the R spatial community.

We also owe a great debt to users participating in discussions on the mail-
ing list, sometimes for specific suggestions, often for fruitful questions, and
occasionally for perceptive bug reports or contributions. Other users contact
us directly, again with valuable input that leads both to a better understanding
on our part of their research realities and to the improvement of the software
involved. Finally, participants at R spatial courses, workshops, and tutorials
have been patient and constructive.

We are also indebted to colleagues who have contributed to improving the
final manuscript by commenting on earlier drafts and pointing out better pro-
cedures to follow in some examples. In particular, we would like to mention
Juanjo Abellán, Nicky Best, Peter J. Diggle, Paul Hiemstra, Rebeca Ramis,
Paulo J. Ribeiro Jr., Barry Rowlingson, and Jon O. Skøien. We are also grate-
ful to colleagues for agreeing to our use of their data sets. Support from Luc
Anselin has been important over a long period, including a very fruitful CSISS
workshop in Santa Barbara in 2002. Work by colleagues, such as the first book
known to us on using R for spatial data analysis (Kopczewska, 2006), provided
further incentives both to simplify the software and complete its description.
Without John Kimmel’s patient encouragement, it is unlikely that we would
have finished this book.

Even though we have benefitted from the help and advice of so many
people, there are bound to be things we have not yet grasped – so remaining
mistakes and omissions remain our sole responsibility. We would be grateful
for messages pointing out errors in this book; errata will be posted on the
book website (http://www.asdar-book.org).

Bergen Roger S. Bivand
Münster Edzer J. Pebesma
London Virgilio Gómez-Rubio
April 2008

Contents

Preface . VII

1 Hello World : Introducing Spatial Data . 1
1.1 Applied Spatial Data Analysis . 1
1.2 Why Do We Use R . 2

1.2.1 ... In General? . 2
1.2.2 ... for Spatial Data Analysis? . 3

1.3 R and GIS . 4
1.3.1 What is GIS? . 4
1.3.2 Service-Oriented Architectures . 6
1.3.3 Further Reading on GIS . 6

1.4 Types of Spatial Data . 7
1.5 Storage and Display . 10
1.6 Applied Spatial Data Analysis . 11
1.7 R Spatial Resources . 13

1.7.1 Online Resources . 14
1.7.2 Layout of the Book . 14

Part I Handling Spatial Data in R

2 Classes for Spatial Data in R . 21
2.1 Introduction . 21
2.2 Classes and Methods in R . 23
2.3 Spatial Objects . 28
2.4 SpatialPoints . 30

2.4.1 Methods . 31
2.4.2 Data Frames for Spatial Point Data 33

2.5 SpatialLines . 38

X Contents

2.6 SpatialPolygons . 41
2.6.1 SpatialPolygonsDataFrame Objects 44
2.6.2 Holes and Ring Direction . 46

2.7 SpatialGrid and SpatialPixel Objects 47

3 Visualising Spatial Data . 57
3.1 The Traditional Plot System . 58

3.1.1 Plotting Points, Lines, Polygons, and Grids 58
3.1.2 Axes and Layout Elements . 60
3.1.3 Degrees in Axes Labels and Reference Grid 64
3.1.4 Plot Size, Plotting Area, Map Scale,

and Multiple Plots . 65
3.1.5 Plotting Attributes and Map Legends 66

3.2 Trellis/Lattice Plots with spplot . 68
3.2.1 A Straight Trellis Example . 68
3.2.2 Plotting Points, Lines, Polygons, and Grids 70
3.2.3 Adding Reference and Layout Elements to Plots 72
3.2.4 Arranging Panel Layout . 73

3.3 Interacting with Plots . 74
3.3.1 Interacting with Base Graphics . 74
3.3.2 Interacting with spplot and Lattice Plots 76

3.4 Colour Palettes and Class Intervals . 76
3.4.1 Colour Palettes . 76
3.4.2 Class Intervals . 77

4 Spatial Data Import and Export . 81
4.1 Coordinate Reference Systems . 82

4.1.1 Using the EPSG List . 83
4.1.2 PROJ.4 CRS Specification . 84
4.1.3 Projection and Transformation . 85
4.1.4 Degrees, Minutes, and Seconds . 87

4.2 Vector File Formats . 88
4.2.1 Using OGR Drivers in rgdal . 89
4.2.2 Other Import/Export Functions . 93

4.3 Raster File Formats . 93
4.3.1 Using GDAL Drivers in rgdal . 94
4.3.2 Writing a Google Earth™ Image Overlay 97
4.3.3 Other Import/Export Functions . 98

4.4 Grass . 99
4.4.1 Broad Street Cholera Data . 104

4.5 Other Import/Export Interfaces . 106
4.5.1 Analysis and Visualisation Applications 108
4.5.2 TerraLib and aRT . 108
4.5.3 Other GIS and Web Mapping Systems 110

4.6 Installing rgdal . 111

Contents XI

5 Further Methods for Handling Spatial Data 113
5.1 Support . 113
5.2 Overlay . 116
5.3 Spatial Sampling . 118
5.4 Checking Topologies . 120

5.4.1 Dissolving Polygons . 121
5.4.2 Checking Hole Status . 122

5.5 Combining Spatial Data . 123
5.5.1 Combining Positional Data . 123
5.5.2 Combining Attribute Data . 124

5.6 Auxiliary Functions . 126

6 Customising Spatial Data Classes and Methods 127
6.1 Programming with Classes and Methods 127

6.1.1 S3-Style Classes and Methods . 129
6.1.2 S4-Style Classes and Methods . 130

6.2 Animal Track Data in Package Trip . 130
6.2.1 Generic and Constructor Functions 131
6.2.2 Methods for Trip Objects . 133

6.3 Multi-Point Data: SpatialMultiPoints . 134
6.4 Hexagonal Grids . 137
6.5 Spatio-Temporal Grids . 140
6.6 Analysing Spatial Monte Carlo Simulations 144
6.7 Processing Massive Grids . 146

Part II Analysing Spatial Data

7 Spatial Point Pattern Analysis . 155
7.1 Introduction . 155
7.2 Packages for the Analysis of Spatial Point Patterns 156
7.3 Preliminary Analysis of a Point Pattern . 160

7.3.1 Complete Spatial Randomness . 160
7.3.2 G Function: Distance to the Nearest Event 161
7.3.3 F Function: Distance from a Point

to the Nearest Event . 162
7.4 Statistical Analysis of Spatial Point Processes 163

7.4.1 Homogeneous Poisson Processes . 164
7.4.2 Inhomogeneous Poisson Processes 165
7.4.3 Estimation of the Intensity . 165
7.4.4 Likelihood of an Inhomogeneous Poisson Process 168
7.4.5 Second-Order Properties . 171

7.5 Some Applications in Spatial Epidemiology 172
7.5.1 Case–Control Studies . 173
7.5.2 Binary Regression Estimator . 178

XII Contents

7.5.3 Binary Regression Using Generalised
Additive Models . 180

7.5.4 Point Source Pollution . 182
7.5.5 Accounting for Confounding and Covariates 186

7.6 Further Methods for the Analysis of Point Patterns 190

8 Interpolation and Geostatistics . 191
8.1 Introduction . 191
8.2 Exploratory Data Analysis . 192
8.3 Non-Geostatistical Interpolation Methods 193

8.3.1 Inverse Distance Weighted Interpolation 193
8.3.2 Linear Regression . 194

8.4 Estimating Spatial Correlation: The Variogram 195
8.4.1 Exploratory Variogram Analysis . 196
8.4.2 Cutoff, Lag Width, Direction Dependence 200
8.4.3 Variogram Modelling . 201
8.4.4 Anisotropy . 205
8.4.5 Multivariable Variogram Modelling 206
8.4.6 Residual Variogram Modelling . 208

8.5 Spatial Prediction . 209
8.5.1 Universal, Ordinary, and Simple Kriging 209
8.5.2 Multivariable Prediction: Cokriging 210
8.5.3 Collocated Cokriging . 212
8.5.4 Cokriging Contrasts . 213
8.5.5 Kriging in a Local Neighbourhood 213
8.5.6 Change of Support: Block Kriging 215
8.5.7 Stratifying the Domain . 216
8.5.8 Trend Functions and their Coefficients 217
8.5.9 Non-Linear Transforms of the Response Variable 218
8.5.10 Singular Matrix Errors . 220

8.6 Model Diagnostics . 221
8.6.1 Cross Validation Residuals . 222
8.6.2 Cross Validation z-Scores . 223
8.6.3 Multivariable Cross Validation . 225
8.6.4 Limitations to Cross Validation . 225

8.7 Geostatistical Simulation . 226
8.7.1 Sequential Simulation . 227
8.7.2 Non-Linear Spatial Aggregation and Block Averages . . . 229
8.7.3 Multivariable and Indicator Simulation 230

8.8 Model-Based Geostatistics and Bayesian Approaches 230
8.9 Monitoring Network Optimization . 231
8.10 Other R Packages for Interpolation and Geostatistics 233

8.10.1 Non-Geostatistical Interpolation . 233
8.10.2 spatial . 233
8.10.3 RandomFields . 234
8.10.4 geoR and geoRglm . 235
8.10.5 fields . 235

Contents XIII

9 Areal Data and Spatial Autocorrelation 237
9.1 Introduction . 237
9.2 Spatial Neighbours . 239

9.2.1 Neighbour Objects . 240
9.2.2 Creating Contiguity Neighbours . 242
9.2.3 Creating Graph-Based Neighbours 244
9.2.4 Distance-Based Neighbours . 246
9.2.5 Higher-Order Neighbours . 249
9.2.6 Grid Neighbours . 250

9.3 Spatial Weights . 251
9.3.1 Spatial Weights Styles . 251
9.3.2 General Spatial Weights . 253
9.3.3 Importing, Converting, and Exporting Spatial

Neighbours and Weights . 255
9.3.4 Using Weights to Simulate Spatial Autocorrelation 257
9.3.5 Manipulating Spatial Weights . 258

9.4 Spatial Autocorrelation: Tests . 258
9.4.1 Global Tests . 261
9.4.2 Local Tests . 268

10 Modelling Areal Data . 273
10.1 Introduction . 273
10.2 Spatial Statistics Approaches . 274

10.2.1 Simultaneous Autoregressive Models 277
10.2.2 Conditional Autoregressive Models 282
10.2.3 Fitting Spatial Regression Models 284

10.3 Mixed-Effects Models . 287
10.4 Spatial Econometrics Approaches . 289
10.5 Other Methods . 296

10.5.1 GAM, GEE, GLMM . 297
10.5.2 Moran Eigenvectors . 302
10.5.3 Geographically Weighted Regression 305

11 Disease Mapping . 311
11.1 Introduction . 312
11.2 Statistical Models . 314

11.2.1 Poisson-Gamma Model . 315
11.2.2 Log-Normal Model . 316
11.2.3 Marshall’s Global EB Estimator . 318

11.3 Spatially Structured Statistical Models . 319
11.4 Bayesian Hierarchical Models . 321

11.4.1 The Poisson-Gamma Model Revisited 322
11.4.2 Spatial Models . 325

11.5 Detection of Clusters of Disease . 332
11.5.1 Testing the Homogeneity of the Relative Risks 333
11.5.2 Moran’s I Test of Spatial Autocorrelation 335

XIV Contents

11.5.3 Tango’s Test of General Clustering 335
11.5.4 Detection of the Location of a Cluster 337
11.5.5 Geographical Analysis Machine . 337
11.5.6 Kulldorff’s Statistic . 338
11.5.7 Stone’s Test for Localised Clusters 340

11.6 Other Topics in Disease Mapping . 341

Afterword . 343
R and Package Versions Used . 344
Data Sets Used . 344

References . 347

Subject Index . 361

Functions Index . 371

Part I

Handling Spatial Data in R

Handling Spatial Data

The key intuition underlying the development of the classes and methods in
the sp package, and its closer dependent packages, is that users approaching
R with experience of GIS will want to see ‘layers’, ‘coverages’, ‘rasters’, or
‘geometries’. Seen from this point of view, sp classes should be reasonably
familiar, appearing to be well-known data models. On the other hand, for sta-
tistician users of R, ‘everything’ is a data.frame, a rectangular table with rows
of observations on columns of variables. To permit the two disparate groups
of users to play together happily, classes have grown that look like GIS data
models to GIS and other spatial data people, and look and behave like data
frames from the point of view of applied statisticians and other data analysts.

This part of the book describes the classes and methods of the sp package,
and in doing so also provides a practical guide to the internal structure of
many GIS data models, as R permits the user to get as close as desired to the
data. However, users will not often need to know more than that of Chap. 4 to
read in their data and start work. Visualisation is covered in Chap. 3, and so a
statistician receiving a well-organised set of data from a collaborator may even
be able to start making maps in two lines of code, one to read the data and
one to plot the variable of interest using lattice graphics. Note that coloured
versions of figures may be found on the book website together with complete
code examples, data sets, and other support material.

If life was always so convenient, this part of the book could be much shorter
than it is. But combining spatial data from different sources often means
that much more insight is needed into the data models involved. The data
models themselves are described in Chap. 2, and methods for handling and
combining them are covered in Chap. 5. Keeping track of which observation
belongs to which geometry is also discussed here, seen from the GIS side as
feature identifiers, and row names from the data frame side. In addition to
data import and export, Chap. 4 also describes the use and transformation of
coordinate reference systems for sp classes, and integration of the open source
GRASS GIS and R. Finally, Chap. 6 explains how the methods and classes
introduced in Chap. 2 can be extended to suit one’s own needs.

1

Hello World : Introducing Spatial Data

1.1 Applied Spatial Data Analysis

Spatial data are everywhere. Besides those we collect ourselves (‘is it raining?’),
they confront us on television, in newspapers, on route planners, on computer
screens, and on plain paper maps. Making a map that is suited to its purpose
and does not distort the underlying data unnecessarily is not easy. Beyond
creating and viewing maps, spatial data analysis is concerned with questions
not directly answered by looking at the data themselves. These questions refer
to hypothetical processes that generate the observed data. Statistical inference
for such spatial processes is often challenging, but is necessary when we try
to draw conclusions about questions that interest us.

Possible questions that may arise include the following:

• Does the spatial patterning of disease incidences give rise to the conclusion
that they are clustered, and if so, are the clusters found related to factors
such as age, relative poverty, or pollution sources?

• Given a number of observed soil samples, which part of a study area is
polluted?

• Given scattered air quality measurements, how many people are exposed
to high levels of black smoke or particulate matter (e.g. PM10),1 and where
do they live?

• Do governments tend to compare their policies with those of their neigh-
bours, or do they behave independently?

In this book we will be concerned with applied spatial data analysis, meaning
that we will deal with data sets, explain the problems they confront us with,
and show how we can attempt to reach a conclusion. This book will refer to the
theoretical background of methods and models for data analysis, but emphasise
hands-on, do-it-yourself examples using R; readers needing this background
should consult the references. All data sets used in this book and all examples
given are available, and interested readers will be able to reproduce them.
1 Particulate matter smaller than about 10 µm.

2 1 Hello World : Introducing Spatial Data

In this chapter we discuss the following:

(i) Why we use R for analysing spatial data
(ii) The relation between R and geographical information systems (GIS)
(iii) What spatial data are, and the types of spatial data we distinguish
(iv) The challenges posed by their storage and display
(v) The analysis of observed spatial data in relation to processes thought to

have generated them
(vi) Sources of information about the use of R for spatial data analysis and

the structure of the book.

1.2 Why Do We Use R

1.2.1 ... In General?

The R system2 (R Development Core Team, 2008) is a free software environ-
ment for statistical computing and graphics. It is an implementation of the
S language for statistical computing and graphics (Becker et al., 1988). For
data analysis, it can be highly efficient to use a special-purpose language like
S, compared to using a general-purpose language.

For new R users without earlier scripting or programming experience,
meeting a programming language may be unsettling, but the investment3 will
quickly pay off. The user soon discovers how analysis components – written or
copied from examples — can easily be stored, replayed, modified for another
data set, or extended. R can be extended easily with new dedicated compo-
nents, and can be used to develop and exchange data sets and data analysis
approaches. It is often much harder to achieve this with programs that require
long series of mouse clicks to operate.

R provides many standard and innovative statistical analysis methods. New
users may find access to both well-tried and trusted methods, and speculative
and novel approaches, worrying. This can, however, be a major strength, be-
cause if required, innovations can be tested in a robust environment against
legacy techniques. Many methods for analysing spatial data are less frequently
used than the most common statistical techniques, and thus benefit pro-
portionally more from the nearness to both the data and the methods that
R permits. R uses well-known libraries for numerical analysis, and can easily
be extended by or linked to code written in S, C, C++, Fortran, or Java. Links
to various relational data base systems and geographical information systems
exist, many well-known data formats can be read and/or written.

The level of voluntary support and the development speed of R are high,
and experience has shown R to be environment suitable for developing pro-
fessional, mission-critical software applications, both for the public and the

2 http://www.r-project.org.
3 A steep learning curve – the user learns a lot per unit time.

1.2 Why Do We Use R 3

private sector. The S language can not only be used for low-level computation
on numbers, vectors, or matrices but can also be easily extended with classes
for new data types and analysis methods for these classes, such as meth-
ods for summarising, plotting, printing, performing tests, or model fitting
(Chambers, 1998).

In addition to the core R software system, R is also a social movement, with
many participants on a continuum from useRs just beginning to analyse data
with R to developeRs contributing packages to the Comprehensive R Archive
Network4 (CRAN) for others to download and employ.

Just as R itself benefits from the open source development model, con-
tributed package authors benefit from a world-class infrastructure, allowing
their work to be published and revised with improbable speed and reliability,
including the publication of source packages and binary packages for many
popular platforms. Contributed add-on packages are very much part of the
R community, and most core developers also write and maintain contributed
packages. A contributed package contains R functions, optional sample data
sets, and documentation including examples of how to use the functions.

1.2.2 ... for Spatial Data Analysis?

For over 10 years, R has had an increasing number of contributed packages for
handling and analysing spatial data. All these packages used to make differ-
ent assumptions about how spatial data were organised, and R itself had no
capabilities for distinguishing coordinates from other numbers. In addition,
methods for plotting spatial data and other tasks were scattered, made differ-
ent assumptions on the organisation of the data, and were rudimentary. This
was not unlike the situation for time series data at the time.

After some joint effort and wider discussion, a group5 of R developers
have written the R package sp to extend R with classes and methods for
spatial data (Pebesma and Bivand, 2005). Classes specify a structure and
define how spatial data are organised and stored. Methods are instances of
functions specialised for a particular data class. For example, the summary
method for all spatial data classes may tell the range spanned by the spatial
coordinates, and show which coordinate reference system is used (such as
degrees longitude/latitude, or the UTM zone). It may in addition show some
more details for objects of a specific spatial class. A plot method may, for
example create a map of the spatial data.

The sp package provides classes and methods for points, lines, polygons,
and grids (Sect. 1.4, Chap. 2). Adopting a single set of classes for spatial data
offers a number of important advantages:

4 CRAN mirrors are linked from http://www.r-project.org/.
5 Mostly the authors of this book with help from Barry Rowlingson and Paulo J.

Ribeiro Jr.

4 1 Hello World : Introducing Spatial Data

(i) It is much easier to move data across spatial statistics packages. The
classes are either supported directly by the packages, reading and writing
data in the new spatial classes, or indirectly, for example by supplying
data conversion between the sp classes and the package’s classes in an
interface package. This last option requires one-to-many links between the
packages, which are easier to provide and maintain than many-to-many
links.

(ii) The new classes come with a well-tested set of methods (functions) for
plotting, printing, subsetting, and summarising spatial objects, or com-
bining (overlaying) spatial data types.

(iii) Packages with interfaces to geographical information systems (GIS), for
reading and writing GIS file formats, and for coordinate (re)projection
code support the new classes.

(iv) The new methods include Lattice plots, conditioning plots, plot methods
that combine points, lines, polygons, and grids with map elements (refer-
ence grids, scale bars, north arrows), degree symbols (as in 52◦N) in axis
labels, etc.

Chapter 2 introduces the classes and methods provided by sp, and discusses
some of the implementation details. Further chapters will show the degree of
integration of sp classes and methods and the packages used for statistical
analysis of spatial data.

Figure 1.1 shows how the reception of sp classes has already influenced the
landscape of contributed packages; interfacing other packages for handling and
analysing spatial data is usually simple as we see in Part II. The shaded nodes
of the dependency graph are packages (co)-written and/or maintained by the
authors of this book, and will be used extensively in the following chapters.

1.3 R and GIS

1.3.1 What is GIS?

Storage and analysis of spatial data is traditionally done in Geographical Infor-
mation Systems (GIS). According to the toolbox-based definition of Burrough
and McDonnell (1998, p. 11), a GIS is ‘...a powerful set of tools for collecting,
storing, retrieving at will, transforming, and displaying spatial data from the
real world for a particular set of purposes’. Another definition mentioned in
the same source refers to ‘...checking, manipulating, and analysing data, which
are spatially referenced to the Earth’.

Its capacity to analyse and visualise data makes R a good choice for spatial
data analysis. For some spatial analysis projects, using only R may be sufficient
for the job. In many cases, however, R will be used in conjunction with GIS
software and possibly a GIS data base as well. Chapter 4 will show how spatial
data are imported from and exported to GIS file formats. As is often the case
in applied data analysis, the real issue is not whether a given problem can be

1.3 R and GIS 5

sp

B
A

R
D

D
C

lu
st

er

G
E

O
m

ap
G

eo
X

p

R
T

O
M

O

S
ta

tD
A

V
IM

as
pa

ce
ec

es
pa

ge
oR

ge
oR

gl
m

gs
ta

t
m

ap
to

ol
s

rg
da

l

si
m

ba
sp

de
p

sp
gr

as
s6

sp
gw

r

sp
la

nc
s

sp
su

rv
ey

su
rv

ei
lla

nc
e

sv
cR

tr
ip

F
ig

.
1
.1

.
T
re

e
o
f

R
co

n
tr

ib
u
te

d
p
a
ck

a
g
es

o
n

C
R

A
N

d
ep

en
d
in

g
o
n

o
r

im
p
o
rt

in
g

sp
d
ir

ec
tl

y
o
r

in
d
ir

ec
tl

y
;
o
th

er
s

su
g
g
es

t
sp

o
r

u
se

it
w

it
h
o
u
t

d
ec

la
ra

ti
o
n

in
th

ei
r

p
a
ck

a
g
e

d
es

cr
ip

ti
o
n
s

(s
ta

tu
s

a
s

o
f
2
0
0
8
-0

4
-0

6
)

6 1 Hello World : Introducing Spatial Data

solved using an environment such as R, but whether it can be solved efficiently
with R. In some cases, combining different software components in a workflow
may be the most robust solution, for example scripting in languages such as
Python.

1.3.2 Service-Oriented Architectures

Today, much of the practice and research in geographical information sys-
tems is moving from toolbox-centred architectures (think of the ‘classic’
Arc/Info™ or ArcGIS™ applications) towards service-centred architectures
(such as Google Earth™). In toolbox-centred architectures, the GIS appli-
cation and data are situated on the user’s computer or local area network.
In service-centred architectures, the tools and data are situated on remote
computers, typically accessed through Internet connections.

Reasons for this change are the increasing availability and bandwidth of
the Internet, and also ownership and maintenance of data and/or analysis
methods. For instance, data themselves may not be freely distributable, but
certain derived products (such as visualisations or generalisations) may be.
A service can be kept and maintained by the provider without end users having
to bother about updating their installed software or data bases. The R system
operates well under both toolbox-centred and service-centred architectures.

1.3.3 Further Reading on GIS

It seems appropriate to give some recommendations for further reading con-
cerning GIS, not least because a more systematic treatment would not be
appropriate here. Chrisman (2002) gives a concise and conceptually elegant
introduction to GIS, with weight on using the data stored in the system;
the domain focus is on land planning. A slightly older text by Burrough and
McDonnell (1998) remains thorough, comprehensive, and perhaps a shade
closer to the earth sciences in domain terms than Chrisman.

Two newer comprehensive introductions to GIS cover much of the same
ground, but are published in colour. Heywood et al. (2006) contains less extra
material than Longley et al. (2005), but both provide very adequate coverage
of GIS as it is seen from within the GIS community today. To supplement
these, Wise (2002) provides a lot of very distilled experience on the technical-
ities of handling geometries in computers in a compact form, often without
dwelling on the computer science foundations; these foundations are given by
Worboys and Duckham (2004). Neteler and Mitasova (2008) provide an ex-
cellent analytical introduction to GIS in their book, which also shows how to
use the open source GRASS GIS, and how it can be interfaced with R.

It is harder to provide guidance with regard to service-centred architec-
tures for GIS. The book by Shekar and Xiong (2008) work is a monumental,
forward-looking collection with strong roots in computer and information sci-
ence, and reflects the ongoing embedding of GIS technologies into database

1.4 Types of Spatial Data 7

systems far more than the standard texts. Two hands-on alternatives show
how service-centred architectures can be implemented at low cost by non-
specialists, working, for example in environmental advocacy groups, or volun-
teer search and rescue teams (Mitchell, 2005; Erle et al., 2005); their approach
is certainly not academic, but gets the job done quickly and effectively.

In books describing the handling of spatial data for data analysts (looking
at GIS from the outside), Waller and Gotway (2004, pp. 38–67) cover most
of the key topics, with a useful set of references to more detailed treatments;
Banerjee et al. (2004, pp. 10–18) give a brief overview of cartography sufficient
to get readers started in the right direction.

1.4 Types of Spatial Data

Spatial data have spatial reference: they have coordinate values and a system
of reference for these coordinates. As a fairly simple example, consider the
locations of volcano peaks on the Earth. We could list the coordinates for
all known volcanoes as pairs of longitude/latitude decimal degree values with
respect to the prime meridian at Greenwich and zero latitude at the equator.
The World Geodetic System (WGS84) is a frequently used representation of
the Earth.

Suppose we are interested in the volcanoes that have shown activity be-
tween 1980 and 2000, according to some agreed seismic registration system.
This data set consists of points only. When we want to draw these points on a
(flat) map, we are faced with the problem of projection: we have to translate
from the spherical longitude/latitude system to a new, non-spherical coor-
dinate system, which inevitably changes their relative positions. In Fig. 1.2,
these data are projected using a Mollweide projection, and, for reference pur-
poses, coast lines have been added. Chapter 4 deals with coordinate reference
systems, and with transformations between them.

0°

75°S

60°S

45°S

30°S

15°S

0°

15°N

30°N

45°N

60°N

75°N

Fig. 1.2. Volcanoes of the world, with last known eruption 1964 or later (+); source:
National Geophysical Data Center

8 1 Hello World : Introducing Spatial Data

If we also have the date and time of the last observed eruption at the
volcano, this information is called an attribute: it is non-spatial in itself, but
this attribute information is believed to exist for each spatial entity (volcano).

Without explicit attributes, points usually carry implicit attributes, for
example all points in this map have the constant implicit attribute – they
mark a ‘volcano peak’, in contrast to other points that do not. We represent
the purely spatial information of entities by data models.The different types
of data models that we distinguish here include the following:

Point, a single point location, such as a GPS reading or a geocoded address
Line, a set of ordered points, connected by straight line segments
Polygon, an area, marked by one or more enclosing lines, possibly containing

holes
Grid, a collection of points or rectangular cells, organised in a regular lattice

The first three are vector data models and represent entities as exactly as
possible, while the final data model is a raster data model, representing con-
tinuous surfaces by using a regular tessellation. All spatial data consist of
positional information, answering the question ‘where is it?’. In many appli-
cations these will be extended by attributes, answering the question ‘what
is where?’; Chrisman (2002, pp. 37–69) distinguishes a range of spatial and
spatio-temporal queries of this kind. Examples for these four basic data models
and of types with attributes will now follow.

The location (x, y coordinates) of a volcano may be sufficient to establish
its position relative to other volcanoes on the Earth, but for describing a single
volcano we can use more information. Let us, for example try to describe the
topography of a volcano. Figure 1.3 shows a number of different ways to
represent a continuous surface (such as topography) in a computer.

First, we can use a large number of points on a dense regular grid and
store the attribute altitude for each point to approximate the surface. Grey
tones are used to specify classes of these points on Fig. 1.3a.

Second, we can form contour lines connecting ordered points with equal
altitude; these are overlayed on the same figure, and separately shown on
Fig. 1.3b. Note that in this case, the contour lines were derived from the point
values on the regular grid.

A polygon is formed when a set of line segments forms a closed object with
no lines intersecting. On Fig. 1.3a, the contour lines for higher altitudes are
closed and form polygons.

Lines and polygons may have attributes, for example the 140 contour line of
Fig. 1.3a may have the label ‘140 m above sea level’, or simply 140. Two closed
contour lines have the attribute 160 m, but within the domain of this study
area several non-closed contour lines have the attribute 110 m. The complete
area inside the 140 m polygon (Fig. 1.3c) has the attribute ‘more than 140 m
above sea level’, or >140. The area above the 160 m contour is represented
by a polygon with a hole (Fig. 1.3d): its centre is part of the crater, which is
below 160 m.

1.4 Types of Spatial Data 9

a b

c

d

Fig. 1.3. Maunga Whau (Mt Eden) is one of about 50 volcanoes in the Auckland
volcanic field. (a) Topographic information (altitude, m) for Maunga Whau on a
10× 10m2 grid, (b) contour lines, (c) 140m contour line: a closed polygon, (d) area
above 160m (hashed): a polygon with a hole

Polygons formed by contour lines of volcanoes usually have a more or less
circular shape. In general, polygons can have arbitrary form, and may for
certain cases even overlap. A special, but common case is when they represent
the boundary of a single categorical variable, such as an administrative region.
In that case, they cannot overlap and should divide up the entire study area:
each point in the study area can and must be attributed to a single polygon,
or lies on a boundary of one or more polygons.

A special form to represent spatial data is that of a grid: the values in each
grid cell may represent an average over the area of the cell, or the value at
the midpoint of the cell, or something more vague – think of image sensors.
In the first case, we can see a grid as a special case of ordered points; in the
second case, they are a collection of rectangular polygons. In any case, we can
derive the position of each cell from the grid location, grid cell size, and the
organisation of the grid cells. Grids are a common way to tessellate a plane.
They are important because

– Devices such as digital cameras and remote sensing instruments register
data on a regular grid

– Computer screens and projectors show data on a grid
– Many spatial or spatio-temporal models, such as climate models, discretise

space by using a regular grid.

10 1 Hello World : Introducing Spatial Data

1.5 Storage and Display

As R is open source, we can find out the meaning of every single bit and byte
manipulated by the software if we need to do so. Most users will, however, be
happy to find that this is unlikely to be required, and is left to a small group
of developers and experts. They will rely on the fact that many users have
seen, tested, or used the code before.

When running an R session, data are usually read or imported using ex-
plicit commands, after which all data are kept in memory; users may choose
to load a saved workspace or data objects. During an R session, the workspace
can be saved to disk or chosen objects can be saved in a portable binary form
for loading into the next session. When leaving an interactive R session, the
question Save workspace image? may be answered positively to save results
to disk; saving the session history is a very useful way of documenting what
has been done, and is recommended as normal practice – consider choosing
an informative file name.

Despite the fact that computers have greater memory capacity than they
used to, R may not be suitable for the analysis of massive data sets, because
data being analysed is held in memory. Massive data sets may, for example
come from satellite imagery, or detailed global coast line information. It is in
such cases necessary to have some idea about data size and memory man-
agement and requirements. Under such circumstances it is often still possible
to use R as an analysis engine on part of the data sets. Smaller useful data sets
can be obtained by selecting a certain region or by sub-sampling, aggregating or
generalising the original data. Chapters 4 and 6 will give hints on how to do this.

Spatial data are usually displayed on maps, where the x- and y-axes show
the coordinate values, with the aspect ratio chosen such that a unit in x
equals a unit in y. Another property of maps is that elements are added for
reference purposes, such as coast lines, rivers, administrative boundaries, or
even satellite images.

Display of spatial data in R is a challenge on its own, and is dealt with
in Chap. 3. For many users, the graphical display of statistical data is among
the most compelling reasons to use R, as maps are traditionally amongst the
strongest graphics we know.

The core R engine was not designed specifically for the display and analysis
of maps, and the limited interactive facilities it offers have drawbacks in this
area. Still, a large number of visualisations come naturally to R graphics,
while they would take a substantial effort to accomplish in legacy GIS. For
one thing, most GIS do not provide conditioning plots, where series of plots
are organised in a regular lattice, share axes, and legends, and allow for sys-
tematic comparison across a large number of settings, scenarios, time, or other
variables (e.g. Fig. 3.10). R provides on-screen graphics and has many graph-
ics drivers, for example for vector graphics output to PostScript, Windows
metafiles, PDF, and many bitmapped graphics formats. And, as mentioned,
it works equally well as a front end or as a service providing back end for
statistical analysis.

1.6 Applied Spatial Data Analysis 11

1.6 Applied Spatial Data Analysis

Statistical inference is concerned with drawing conclusions based on data and
prior assumptions. The presence of a model of the data generating process may
be more or less acknowledged in the analysis, but its reality will make itself felt
sooner or later. The model may be manifest in the design of data collection, in
the distributional assumptions employed, and in many other ways. A key in-
sight is that observations in space cannot in general be assumed to be mutually
independent, and that observations that are close to each other are likely to
be similar (ceteris paribus). This spatial patterning – spatial autocorrelation –
may be treated as useful information about unobserved influences, but it does
challenge the application of methods of statistical inference that assume the
mutual independence of observations.

Not infrequently, the prior assumptions are not made explicit, but are
rather taken for granted as part of the research tradition of a particular scien-
tific subdiscipline. Too little attention typically is paid to the assumptions, and
too much to superficial differences; for example Venables and Ripley (2002,
p. 428) comment on the difference between the covariance function and the
semi-variogram in geostatistics, that ‘[m]uch heat and little light emerges from
discussions of their comparison’.

To illustrate the kinds of debates that rage in disparate scientific com-
munities analysing spatial data, we sketch two current issues: red herrings in
geographical ecology and the interpretation of spatial autocorrelation in urban
economics.

The red herring debate in geographical ecology was ignited by Lennon
(2000), who claimed that substantive conclusions about the impact of envi-
ronmental factors on, for example species richness had been undermined by not
taking spatial autocorrelation into account. Diniz-Filho et al. (2003) replied
challenging not only the interpretation of the problem in statistical terms, but
pointing out that geographical ecology also involves the scale problem, that
the influence of environmental factors is moderated by spatial scale.

They followed this up in a study in which the data were sub-sampled
to attempt to isolate the scale problem. But they begin: ‘It is important to
note that we do not present a formal evaluation of this issue using statistical
theory. . ., our goal is to illustrate heuristically that the often presumed bias
due to spatial autocorrelation in OLS regression does not apply to real data
sets’ (Hawkins et al., 2007, p. 376).

The debate continues with verve in Beale et al. (2007) and Diniz-Filho
et al. (2007). This is quite natural, as doubts about the impacts of envi-
ronmental drivers on species richness raise questions about, for example, the
effects of climate change. How to analyse spatial data is obviously of impor-
tance within geographical ecology. However, Diniz-Filho et al. (2007, p. 850)
conclude that ‘[w]hen multiple assumptions are not being met, as in the case
of virtually all geographical analyses, can a result from any single method
(whether spatial or non-spatial) be claimed to be better? . . . If different spatial

12 1 Hello World : Introducing Spatial Data

methods themselves are unstable and generate conflicting results in real data,
it makes no sense to claim that any particular method is always superior to
any other’.

The urban economics debate is not as vigorous, but is of some practical
interest, as it concerns the efficiency of services provided by local government.
Revelli (2003) asks whether the spatial patterns observed in model residuals
are a reaction to model misspecification, or do they signal the presence of
substantive interaction between observations in space? In doing so, he reaches
back to evocations of the same problem in the legacy literature of spatial
statistics. As Cliff and Ord (1981, pp. 141–142) put it, ‘two adjacent super-
markets will compete for trade, and yet their turnover will be a function of
general factors such as the distribution of population and accessibility’. They
stress that ‘the presence of spatial autocorrelation may be attributable either
to trends in the data or to interactions; . . . [t]he choice of model must in-
volve the scientific judgement of the investigator and careful testing of the
assumptions’. When the fitted model is misspecified, it will be hard to draw
meaningful conclusions, and the care advised by Cliff and Ord will be required.

One way of testing the assumptions is through changes in the policy
context over time, where a behavioural model predicts changes in spatial
autocorrelation – if the policy changes, the level of spatial interaction should
change (Bivand and Szymanski, 1997; Revelli, 2003). Alternatives include us-
ing multiple levels in local government (Revelli, 2003), or different electoral
settings, such as lame-duck administrations as controls (Bordignon et al.,
2003). A recent careful study has used answers to a questionnaire survey to
check whether interaction has occurred or not. It yields a clear finding that
the observed spatial patterning in local government efficiency scores is related
to the degree to which they compare their performance with that of other
local government entities (Revelli and Tovmo, 2007).

This book will not provide explicit guidance on the choice of models, be-
cause the judgement of researchers in different scientific domains will vary.
One aspect shared by both examples is that the participants stress the impor-
tance of familiarity with the core literature of spatial statistics. It turns out
that many of the insights found there remain fundamental, despite the pas-
sage of time. Applied spatial data analysis seems to be an undertaking that,
from time to time, requires the analyst to make use of this core literature.

Without attempting to be exhaustive in reviewing key books covering all
the three acknowledged areas of spatial statistics – point processes, geostatis-
tics, and areal data – we can make some choices. Bivand (2008, pp. 16–17)
documents the enduring position of Ripley (1981)6 and Cliff and Ord (1981)
in terms of paper citations. Ripley (1988) supplements and extends the earlier
work, and is worth careful attention. The comprehensive text by Cressie (1993)
is referred to very widely; careful reading of the often very short passages of
relevance to a research problem can be highly rewarding. Schabenberger and

6 Reprinted in 2004.

1.7 R Spatial Resources 13

Gotway (2005) cover much of the same material, incorporating advances made
over the intervening period. Banerjee et al. (2004) show how the Bayesian ap-
proach to statistics can be used in applied spatial data analysis.

Beyond the core statistical literature, many disciplines have their own tra-
ditions, often collated in widely used textbooks. Public health and disease
mapping are well provided for by Waller and Gotway (2004), as is ecology
by Fortin and Dale (2005). O’Sullivan and Unwin (2003) cover similar topics
from the point of view of geography and GIS. Like Banerjee et al. (2004), the
disciplinary texts differ from the core literature not only in the way theoretical
material is presented, but also in the availability of the data sets used in the
books for downloading and analysis. Haining (2003) is another book providing
some data sets, and an interesting bridge to the use of Bayesian approaches
in the geographies of health and crime. Despite its age, Bailey and Gatrell
(1995) remains a good text, with support for its data sets in R packages.

In an R News summary, Ripley (2001) said that one of the reasons for
the relatively limited availability of spatial statistics functions in R at that
time was the success of the S-PLUS™ spatial statistics module (Kaluzny et al.,
1998). Many of the methods for data handling and analysis are now available
in R complement and extend those in the S-PLUS™ module. We also feel that
the new packaging system in S-PLUS™ constitutes an invitation, for instance to
release packages like sp for S-PLUS™– during the development of the package,
it was tested regularly under both compute engines. Although the names of
functions and arguments for spatial data analysis differ between S-PLUS™ and
R, users of the S-PLUS™ spatial statistics module should have no difficulty in
‘finding their way around’ our presentation.

To summarise the approach to applied spatial data analysis adopted here,
we can say that – as with the definition of geography as ‘what geographers
do’ – applied spatial data analysis can best be understood by observing what
practitioners do and how they do it. Since practitioners may choose to con-
duct analyses in different ways, it becomes vital to keep attention on ‘how
they do it’, which R facilitates, with its unrivalled closeness to both data
and the implementation of methods. It is equally important to create and
maintain bridges between communities of practitioners, be they innovative
statisticians or dedicated field scientists, or (rarely) both in the same per-
son. The R Spatial community attempts to offer such opportunities, without
necessarily prescribing or proscribing particular methods, and this approach
will be reflected in this book.

1.7 R Spatial Resources

There are a range of resources for analysing spatial data with R, one being this
book. In using the book, it is worth bearing in mind the close relationships
between the increase in the availability of software for spatial data analysis on
CRAN and the activities of the informal community of users interested in

14 1 Hello World : Introducing Spatial Data

spatial data analysis. Indeed, without contributions, advice, bug reports, and
fruitful questions from users, very little would have been achieved. So before
going on to present the structure of the book, we mention some of the more
helpful online resources.

1.7.1 Online Resources

Since CRAN has grown to over 1,200 packages, finding resources is not sim-
ple. One opportunity is to use the collection of ‘Task Views’ available on
CRAN itself. One of these covers spatial data analysis, and is kept more-
or-less up to date. Other task views may also be relevant. These web pages
are intended to be very concise, but because they are linked to the resources
listed, including packages on CRAN, they can be considered as a kind of
‘shop window’. By installing the ctv package and executing the command in-

stall.views("Spatial"), you will install almost all the contributed packages
needed to reproduce the examples in this book (which may be downloaded
from the book website).

The spatial task view is available on all CRAN mirrors, but may be ac-
cessed directly;7 it provides a very concise summary of available contributed
packages. It also specifically links two other resources, a mailing list dedicated
to spatial data analysis with R and an R-Geo website. The R-sig-geo mailing
list was started in 2003 after sessions on spatial statistics at the Distributed
Statistical Computing conference organised in Vienna earlier the same year.
By late 2007, the mailing list was being used by over 800 members, off-loading
some of the spatial topic traffic from the main R-help mailing list. While R-help
can see over 100 messages a day, R-sig-geo has moderate volume.

The archives of the mailing list are hosted in Zurich with the other R
mailing list archives, and copies are held on Gmane and Nabble. This means
that list traffic on an interesting thread can be accessed by general Internet
search engines as well as the RSiteSearch() internal R search engine; a Google™
search on R gstat kriging picks up list traffic easily.

The second linked resource is the R-Geo website, generously hosted since
its inception by Luc Anselin, and is currently hosted at the Spatial Analy-
sis Laboratory (SAL) in the Department of Geography at the University of
Illinois, Urbana-Champaign. Because the site uses a content management sys-
tem, it may be updated at will, but does not duplicate the CRAN task view.
When users report news or issues, including installation issues, with packages,
this is the site where postings will be made.

1.7.2 Layout of the Book

This book is divided into two basic parts, the first presenting the shared R
packages, functions, classes, and methods for handling spatial data. This part

7 http://CRAN.R-project.org/view=Spatial.

1.7 R Spatial Resources 15

is of interest to users who need to access and visualise spatial data, but who
are not initially concerned with drawing conclusions from analysing spatial
data per se. The second part showcases more specialised kinds of spatial data
analysis, in which the relative position of observations in space may contribute
to understanding the data generation process. This part is not an introduction
to spatial statistics in itself, and should be read with relevant textbooks and
papers referred to in the chapters.

Chapters 2 through 6 introduce spatial data handling in R. Readers need-
ing to get to work quickly may choose to read Chap. 4 first, and return to other
chapters later to see how things work. Those who prefer to see the naked struc-
ture first before using it will read the chapters in sequence, probably omitting
technical subsections. The functions, classes, and methods are indexed, and
so navigation from one section to another should be feasible.

Chapter 2 discusses in detail the classes for spatial data in R, as imple-
mented in the sp package, and Chap. 3 discusses a number of ways of visu-
alising for spatial data. Chapter 4 explains how coordinate reference systems
work in the sp representation of spatial data in R, how they can be defined
and how data can be transformed from one system to another, how spatial
data can be imported into R or exported from R to GIS formats, and how R
and the open source GRASS GIS are integrated. Chapter 5 covers methods
for handling the classes defined in Chap. 2, especially for combining and in-
tegrating spatial data. Finally, Chap. 6 explains how the methods and classes
introduced in Chap. 2 can be extended to suit one’s own needs.

If we use the classification of Cressie (1993), we can introduce the applied
spatial data analysis part of the book as follows: Chap. 7 covers the analysis of
spatial point patterns, in which the relative position of points is compared with
clustered, random, or regular generating processes. Chapter 8 presents the
analysis of geostatistical data, with interpolation from values at observation
points to prediction points. Chapters 9 and 10 deal with the statistical analysis
of areal data, where the observed entities form a tessellation of the study area,
and are often containers for data arising at other scales; Chap. 11 covers the
special topic of disease mapping in R, and together they cover the analysis of
lattice data, here termed areal data.

Data sets and code for reproducing the examples in this book are avail-
able from http://www.asdar-book.org; the website also includes coloured
versions of the figures and other support material.

2

Classes for Spatial Data in R

2.1 Introduction

Many disciplines have influenced the representation of spatial data, both in
analogue and digital forms. Surveyors, navigators, and military and civil en-
gineers refined the fundamental concepts of mathematical geography, estab-
lished often centuries ago by some of the founders of science, for example by
al-Khwārizmı̄. Digital representations came into being for practical reasons in
computational geometry, in computer graphics and hardware-supported gam-
ing, and in computer-assisted design and virtual reality. The use of spatial
data as a business vehicle has been spurred in the early years of the present
century by consumer broadband penetration and distributed server farms,
with a prime example being Google Earth™.1 There are often interactions be-
tween the graphics hardware required and the services offered, in particular
for the fast rendering of scene views.

In addition, space and other airborne technologies have vastly increased
the volumes and kinds of spatial data available. Remote sensing satellites
continue to make great contributions to earth observation, with multi-spectral
images supplementing visible wavelengths. The Shuttle Radar Topography
Mission (SRTM) in February 2000 has provided elevation data for much of
the earth. Other satellite-borne sensor technologies are now vital for timely
storm warnings, amongst other things. These complement terrestrial networks
monitoring, for example lightning strikes and the movement of precipitation
systems by radar.

Surveying in the field has largely been replaced by aerial photogram-
metry, mapping using air photographs usually exposed in pairs of stereo
images. Legacy aerial photogrammetry worked with analogue images, and
many research laboratories and mapping agencies have large archives of
air photographs with coverage beginning from the 1930s. These images can
be scanned to provide a digital representation at chosen resolutions. While

1 http://earth.google.com/.

22 2 Classes for Spatial Data in R

satellite imagery usually contains metadata giving the scene frame – the sensor
direction in relation to the earth at scan time – air photographs need to be
registered to known ground control points.

These ground control points were ‘known’ from terrestrial triangulation,
but could be in error. The introduction of Global Positioning System (GPS)
satellites has made it possible to correct the positions of existing networks of
ground control points. The availability of GPS receivers has also made it pos-
sible for data capture in the field to include accurate positional information
in a known coordinate reference system. This is conditioned by the require-
ment of direct line-of-sight to a sufficient number of satellites, not easy in
mountain valleys or in city streets bounded by high buildings. Despite this
limitation, around the world the introduction of earth observation satellites
and revised ground control points have together caused breaks of series in
published maps, to take advantage of the greater accuracy now available. This
means that many older maps cannot be matched to freshly acquired position
data without adjustment.

All of these sources of spatial data involve points, usually two real numbers
representing position in a known coordinate reference system. It is possible to
go beyond this simple basis by combining pairs of points to form line segments,
combining line segments to form polylines, networks or polygons, or regular
grid centres. Grids can be defined within a regular polygon, usually a rectangle,
with given resolution – the size of the grid cells. All these definitions imply
choices of what are known in geographical information systems (GIS) as data
models, and these choices have most often been made for pragmatic reasons.
All the choices also involve trade-offs between accuracy, feasibility, and cost.

Artificial objects are easiest to represent, like roads, bridges, buildings, or
similar structures. They are crisply defined, and are not subject to natural
change – unlike placing political borders along the centre lines or deepest
channels of meandering rivers. Shorelines are most often natural and cannot
be measured accurately without specifying measurement scale. Boundaries
between areas of differing natural land cover are frequently indeterminate,
with gradations from one land cover category to another. Say that we want
to examine the spatial distribution of a species by land cover category; our
data model of how to define the boundary between categories will affect the
outcome, possibly strongly. Something of the same affects remote sensing,
because the reported values of the observed pixels will hide sub-pixel variation.

It is unusual for spatial data to be defined in three dimensions, because of
the close links between cartography and data models for spatial data. When
there are multiple observations on the same attribute at varying heights or
depths, they are most often treated as separate layers. GIS-based data mod-
els do not fit time series data well either, even though some environmental
monitoring data series are observed in three dimensions and time. Some GIS
software can handle voxels, the 3D equivalent of pixels – 2D raster cells –
but the third dimension in spatial data is not handled satisfactorily, as is
the case in computer-assisted design or medical imaging. On the other hand,

2.2 Classes and Methods in R 23

many GIS packages do provide a 2.5D intermediate solution for viewing, by
draping thematic layers, like land cover or a road network, over a digital el-
evation model. In this case, however, there is no ‘depth’ in the data model,
as we can see when a road tunnel route is draped over the mountain it goes
through.

2.2 Classes and Methods in R

In Chap. 1, we described R as a language and environment for data analysis.
Although this is not the place to give an extended introduction to R,2 it will
be useful to highlight some of its features (see also Braun and Murdoch, 2007,
for an up-to-date introduction). In this book, we will be quoting R commands
in the text, showing which commands a user could give, and how the non-
graphical output might be represented when printed to the console.

Of course, R can be used as a calculator to carry out simple tasks, where
no values are assigned to variables, and where the results are shown without
being saved, such as the area of a circle of radius 10:

> pi * 10^2

[1] 314.1593

Luckily, π is a built-in constant in R called pi, and so entering a rounded
version is not needed. So this looks like a calculator, but appearances mislead.
The first misleading impression is that the arithmetic is simply being ‘done’,
while in fact it is being translated (parsed) into functions (operators) with
arguments first, and then evaluated:

> "*"(pi, "^"(10, 2))

[1] 314.1593

When the operators or functions permit, vectors of values may be used
as readily as scalar values (which are vectors of unit length) — here the ‘:’

operator is used to generate an integer sequence of values:

> pi * (1:10)^2

[1] 3.141593 12.566371 28.274334 50.265482 78.539816 113.097336

[7] 153.938040 201.061930 254.469005 314.159265

The second misapprehension is that what is printed to the console is the
‘result’, when it is actually the outcome of applying the appropriate print

method for the class of the ‘result’, with default arguments. If we store the
value returned for the area of our circle in variable x using the assignment
operator <-, we can print x with the default number of digits, or with more if
2 Free documentation, including the very useful ‘An Introduction to R’ (Venables

et al., 2008), may be downloaded from CRAN.

24 2 Classes for Spatial Data in R

we so please. Just typing the variable name at the interactive prompt invokes
the appropriate print method, but we can also pass it to the print method
explicitly:

> x <- pi * 10^2

> x

[1] 314.1593

> print(x)

[1] 314.1593

> print(x, digits = 12)

[1] 314.159265359

We can say that the variable x contains an object of a particular class, in this
case:

> class(x)

[1] "numeric"

> typeof(x)

[1] "double"

where typeof returns the storage mode of the object in variable x. It is the
class of the object that determines the method that will be used to handle
it; if there is no specific method for that class, it may be passed to a default
method. These methods are also known as generic functions, often including
at least print, plot, and summary methods. In the case of the print method,
numeric is not provided for explicitly, and so the default method is used. The
plot method, as its name suggests, will use the current graphics device to
make a visual display of the object, dispatching to a specific method for the
object class if provided. In comparison with the print method, the summary

method provides a qualified view of the data, highlighting the key features of
the object.

When the S language was first introduced, it did not use class/method
mechanisms at all. They were introduced in Chambers and Hastie (1992) and
S version 3, in a form that is known as S3 classes or old-style classes. These
classes were not formally defined, and ‘just grew’; the vast majority of objects
returned by model fitting functions belong to old-style classes. Using a non-
spatial example from the standard data set cars, we can see that it is an object
of class data.frame, stored in a list, which is a vector whose components can
be arbitrary objects; data.frame has both names and summary methods:

> class(cars)

[1] "data.frame"

2.2 Classes and Methods in R 25

> typeof(cars)

[1] "list"

> names(cars)

[1] "speed" "dist"

> summary(cars)

speed dist

Min. : 4.0 Min. : 2.00

1st Qu.:12.0 1st Qu.: 26.00

Median :15.0 Median : 36.00

Mean :15.4 Mean : 42.98

3rd Qu.:19.0 3rd Qu.: 56.00

Max. :25.0 Max. :120.00

The data.frame contains two variables, one recording the speed of the
observed cars in mph, the other the stopping distance measured in feet – the
observations were made in the 1920s. When uncertain about the structure of
something in our R workspace, revealed for example by using the ls function
for listing the contents of the workspace, the str3 method often gives a clear
digest, including the size and class:

> str(cars)

'data.frame': 50 obs. of 2 variables:

$ speed:num 4 4 7 7 8 ...

$ dist :num 2 10 4 22 16 ...

Data frames are containers for data used everywhere in S since their full
introduction in Chambers and Hastie (1992, pp. 45–94). Recent and shorter
introductions to data frames are given by Crawley (2005, pp. 15–22), Crawley
(2007, pp. 107–133), and Dalgaard (2002, pp. 18–19) and in the online doc-
umentation (Venables et al., 2008, pp. 27–29 in the R 2.6.2 release). Data
frames view the data as a rectangle of rows of observations on columns of val-
ues of variables of interest. The representation of the values of the variables
of interest can include integer and floating point numeric types, logical, char-
acter, and derived classes. One very useful derived class is the factor, which
is represented as integers pointing to character levels, such as ‘forest’ or
‘arable’. Printed, the values look like character values, but are not – when
a data frame is created, all character variables included in it are converted
to factor by default. Data frames also have unique row names, represented
as an integer or character vector or as an internal mechanism to signal that

3 str can take additional arguments to control its output.

26 2 Classes for Spatial Data in R

the sequence from 1 to the number of rows in the data frame are used. The
row.names function is used to access and assign data frame row names.

One of the fundamental abstractions used in R is the formula introduced in
Chambers and Hastie (1992, pp. 13–44) – an online summary may be found
in Venables et al. (2008, pp. 50–52 in the R 2.6.2 release). The abstraction
is intended to make statistical modelling as natural and expressive as pos-
sible, permitting the analyst to focus on the substantive problem at hand.
Because the formula abstraction is used in very many contexts, it is worth
some attention. A formula is most often two-sided, with a response variable
to the left of the ∼ (tilde) operator, and in this case a determining variable on
the right:

> class(dist ~ speed)

[1] "formula"

These objects are typically used as the first argument to model fitting func-
tions, such as lm, which is used to fit linear models. They will usually be
accompanied by a data argument, indicating where the variables are to be
found:

> lm(dist ~ speed, data = cars)

Call:

lm(formula = dist ~ speed, data = cars)

Coefficients:

(Intercept) speed

-17.579 3.932

This is a simple example, but very much more can be done with the formula

abstraction. If we create a factor for the speed variable by cutting it at its
quartiles, we can contrast how the plot method displays the relationship be-
tween two numerical variables and a numerical variable and a factor (shown
in Fig. 2.1):

> cars$qspeed <- cut(cars$speed, breaks = quantile(cars$speed),

+ include.lowest = TRUE)

> is.factor(cars$qspeed)

[1] TRUE

> plot(dist ~ speed, data = cars)

> plot(dist ~ qspeed, data = cars)

Finally, let us see how the formula with the right-hand side factor is han-
dled by lm – it is converted into ‘dummy’ variable form automatically:

2.2 Classes and Methods in R 27

5 10 15 20 25

0
20

40
60

80
12

0

numerical: scatterplot

speed

di
st

[4,12] (15,19]

0
20

40
60

80
12

0

factor: boxplots

qspeed
di

st
Fig. 2.1. Plot methods for a formula with numerical (left panel) and factor (right
panel) right-hand side variables

> lm(dist ~ qspeed, data = cars)

Call:

lm(formula = dist ~ qspeed, data = cars)

Coefficients:

(Intercept) qspeed(12,15] qspeed(15,19] qspeed(19,25]

18.20 21.98 31.97 51.13

Variables in the formula may also be transformed in different ways, for ex-
ample using log. The formula is carried through into the object returned by
model fitting functions to be used for prediction from new data provided in a
data.frame with the same column names as the right-hand side variables, and
the same level names if the variable is a factor.

New-style (S4) classes were introduced in the S language at release 4,
and in Chambers (1998), and are described by Venables and Ripley (2000,
pp. 75–121), and in subsequent documentation installed with R.4 Old-style
classes are most often simply lists with attributes; they are not defined for-
mally. Although users usually do not change values inside old-style classes,
there is nothing to stop them doing so, for example changing the representa-
tion of coordinates from floating point to integer numbers. This means that
functions need to check, among other things, whether components of a class
exist, and whether they are represented correctly, before they can be handled.
The central advantage of new-style classes is that they have formal definitions
4 There is little instructional material online, although this useR conference

talk remains relevant: http://www.ci.tuwien.ac.at/Conferences/useR-2004/
Keynotes/Leisch.pdf.

28 2 Classes for Spatial Data in R

that specify the name and type of the components, called slots, that they
contain. This simplifies the writing, maintenance, and use of the classes, be-
cause their format is known from the definition. For a further discussion of
programming for classes and methods, see Sect. 6.1.

Because the classes provided by the sp package are new-style classes, we
will be seeing how such classes work in practice below. In particular, we will
be referring to the slots in class definitions; slots are specified in the definition
as the representation of what the class contains. Many methods are written
for the classes to be introduced in the remainder of this chapter, in particular
coercion methods for changing the way an object is represented from one class
to another. New-style classes can also check the validity of objects being cre-
ated, for example to stop the user from filling slots with data that do not
conform to the definition.

2.3 Spatial Objects

The foundation class is the Spatial class, with just two slots. The first is a
bounding box, a matrix of numerical coordinates with column names c(‘min’,
‘max’), and at least two rows, with the first row eastings (x-axis) and the
second northings (y-axis). Most often the bounding box is generated auto-
matically from the data in subclasses of Spatial. The second is a CRS class
object defining the coordinate reference system, and may be set to ‘missing’,
represented by NA in R, by CRS(as.character(NA)), its default value. Oper-
ations on Spatial* objects should update or copy these values to the new
Spatial* objects being created. We can use getClass to return the complete
definition of a class, including its slot names and the types of their contents:

> library(sp)

> getClass("Spatial")

Slots:

Name: bbox proj4string

Class: matrix CRS

Known Subclasses:

Class "SpatialPoints", directly

Class "SpatialLines", directly

Class "SpatialPolygons", directly

Class "SpatialPointsDataFrame", by class "SpatialPoints", distance 2

Class "SpatialPixels", by class "SpatialPoints", distance 2

Class "SpatialGrid", by class "SpatialPoints", distance 3

Class "SpatialPixelsDataFrame", by class "SpatialPoints", distance 3

Class "SpatialGridDataFrame", by class "SpatialPoints", distance 4

Class "SpatialLinesDataFrame", by class "SpatialLines", distance 2

Class "SpatialPolygonsDataFrame", by class "SpatialPolygons",

distance 2

2.3 Spatial Objects 29

As we see, getClass also returns known subclasses, showing the classes that
include the Spatial class in their definitions. This also shows where we are
going in this chapter, moving from the foundation class to richer represen-
tations. But we should introduce the coordinate reference system (CRS) class
very briefly; we will return to its description in Chap. 4.

> getClass("CRS")

Slots:

Name: projargs

Class: character

The class has a character string as its only slot value, which may be a missing
value. If it is not missing, it should be a PROJ.4-format string describing the
projection (more details are given in Sect. 4.1.2). For geographical coordinates,
the simplest such string is "+proj=longlat", using "longlat", which also shows
that eastings always go before northings in sp classes. Let us build a simple
Spatial object from a bounding box matrix, and a missing coordinate reference
system:

> m <- matrix(c(0, 0, 1, 1), ncol = 2, dimnames = list(NULL,

+ c("min", "max")))

> crs <- CRS(projargs = as.character(NA))

> crs

CRS arguments: NA

> S <- Spatial(bbox = m, proj4string = crs)

> S

An object of class "Spatial"

Slot "bbox":

min max

[1,] 0 1

[2,] 0 1

Slot "proj4string":

CRS arguments: NA

We could have used new methods to create the objects, but prefer to use
helper functions with the same names as the classes that they instantiate.
If the object is known not to be projected, a sanity check is carried out on
the coordinate range (which here exceeds the feasible range for geographical
coordinates):

> Spatial(matrix(c(350, 85, 370, 95), ncol = 2, dimnames = list(NULL,

+ c("min", "max"))), proj4string = CRS("+longlat"))

Error in validityMethod(object) : Geographical CRS given to

non-conformant data

30 2 Classes for Spatial Data in R

2.4 SpatialPoints

The SpatialPoints class is the first subclass of Spatial, and a very important
one. The extension of SpatialPoints to other subclasses means that explaining
how this class works will yield benefits later on. In this section, we also look
at methods for Spatial* objects, and at extending Spatial* objects to include
attribute data, where each spatial entity, here a point, is linked to a row in
a data frame. We take Spatial* objects to be subclasses of Spatial, and the
best place to start is with SpatialPoints.

A two-dimensional point can be described by a pair of numbers (x, y),
defined over a known region. To represent geographical phenomena, the max-
imum known region is the earth, and the pair of numbers measured in degrees
are a geographical coordinate, showing where our point is on the globe. The
pair of numbers define the location on the sphere exactly, but if we represent
the globe more accurately by an ellipsoid model, such as the World Geodetic
System 1984 – introduced after satellite measurements corrected our under-
standing of the shape of the earth – that position shifts slightly. Geographical
coordinates can extend from latitude 90◦ to −90◦ in the north–south direc-
tion, and from longitude 0◦ to 360◦ or equivalently from −180◦ to 180◦ in the
east–west direction. The Poles are fixed, but where the longitudes fall depends
on the choice of prime meridian, most often Greenwich just east of London.
This means that geographical coordinates define a point on the earth’s surface
unequivocally if we also know which ellipsoid model and prime meridian were
used; the concept of datum, relating the ellipsoid to the distance from the
centre of the earth, is introduced on p. 82.

Using the standard read.table function, we read in a data file with the
positions of CRAN mirrors across the world. We extract the two columns with
the longitude and latitude values into a matrix, and use str to view a digest:

> CRAN_df <- read.table("CRAN051001a.txt", header = TRUE)

> CRAN_mat <- cbind(CRAN_df$long, CRAN_df$lat)

> row.names(CRAN_mat) <- 1:nrow(CRAN_mat)

> str(CRAN_mat)

num [1:54, 1:2] 153 145 ...

- attr(*, "dimnames")=List of 2

..$:chr [1:54] "1" "2" ...

..$:NULL

The SpatialPoints class extends the Spatial class by adding a coords slot,
into which a matrix of point coordinates can be inserted.

> getClass("SpatialPoints")

Slots:

Name: coords bbox proj4string

Class: matrix matrix CRS

2.4 SpatialPoints 31

Extends: "Spatial"

Known Subclasses:

Class "SpatialPointsDataFrame", directly

Class "SpatialPixels", directly

Class "SpatialGrid", by class "SpatialPixels", distance 2

Class "SpatialPixelsDataFrame", by class "SpatialPixels", distance 2

Class "SpatialGridDataFrame", by class "SpatialGrid", distance 3

It has a summary method that shows the bounding box, whether the object is
projected (here FALSE, because the string "longlat" is included in the projec-
tion description), and the number of rows of coordinates. Classes in sp are not
atomic: there is no SpatialPoint class that is extended by SpatialPoints. This
is because R objects are vectorised by nature, not atomic. A SpatialPoints

object may, however, consist of a single point.

> llCRS <- CRS("+proj=longlat +ellps=WGS84")

> CRAN_sp <- SpatialPoints(CRAN_mat, proj4string = llCRS)

> summary(CRAN_sp)

Object of class SpatialPoints

Coordinates:

min max

coords.x1 -122.95000 153.0333

coords.x2 -37.81667 57.0500

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

Number of points: 54

SpatialPoints objects may have more than two dimensions, but plot methods
for the class use only the first two.

2.4.1 Methods

Methods are available to access the values of the slots of Spatial objects.
The bbox method returns the bounding box of the object, and is used both
for preparing plotting methods (see Chap. 3) and internally in handling data
objects. The first row reports the west–east range and the second the south–
north direction. If we want to take a subset of the points in a SpatialPoints

object, the bounding box is reset, as we will see.

> bbox(CRAN_sp)

min max

coords.x1 -122.95000 153.0333

coords.x2 -37.81667 57.0500

First, the other generic method for all Spatial objects, proj4string, will
be introduced. The basic method reports the projection string contained as a

32 2 Classes for Spatial Data in R

CRS object in the proj4string slot of the object, but it also has an assignment
form, allowing the user to alter the current value, which can also be a CRS

object containing a character NA value:

> proj4string(CRAN_sp)

[1] "+proj=longlat +ellps=WGS84"

> proj4string(CRAN_sp) <- CRS(as.character(NA))

> proj4string(CRAN_sp)

[1] NA

> proj4string(CRAN_sp) <- llCRS

Extracting the coordinates from a SpatialPoints object as a numeric matrix
is as simple as using the coordinates method. Like all matrices, the indices
can be used to choose subsets, for example CRAN mirrors located in Brazil
in 2005:

> brazil <- which(CRAN_df$loc == "Brazil")

> brazil

[1] 4 5 6 7 8

> coordinates(CRAN_sp)[brazil,]

coords.x1 coords.x2

[1,] -49.26667 -25.41667

[2,] -42.86667 -20.75000

[3,] -43.20000 -22.90000

[4,] -47.63333 -22.71667

[5,] -46.63333 -23.53333

In addition, a SpatialPoints object can also be accessed by index, using the
"[" operator, here on the coordinate values treated as an entity. The object
returned is of the same class, and retains the projection information, but has
a new bounding box:

> summary(CRAN_sp[brazil,])

Object of class SpatialPoints

Coordinates:

min max

coords.x1 -49.26667 -42.86667

coords.x2 -25.41667 -20.75000

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

Number of points: 5

The "[" operator also works for negative indices, which remove those coordi-
nates from the object, here by removing mirrors south of the Equator:

2.4 SpatialPoints 33

> south_of_equator <- which(coordinates(CRAN_sp)[, 2] <

+ 0)

> summary(CRAN_sp[-south_of_equator,])

Object of class SpatialPoints

Coordinates:

min max

coords.x1 -122.95 140.10

coords.x2 24.15 57.05

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

Number of points: 45

Because summary and print methods are so common in R, we used them here
without special mention. They are provided for sp classes, with summary re-
porting the number of spatial entities, the projection information, and the
bounding box, and print gives a view of the data in the object. As usual in
S, the actual underlying data and the output of the print method may differ,
for example in the number of digits shown.

An important group of methods for visualisation of Spatial* objects are
presented in detail in Chap. 3; each such object class has a plot method. Other
methods will also be introduced in Chap. 5 for combining (overlaying) different
Spatial* objects, for sampling from Spatial objects, and for merging spatial
data objects.

2.4.2 Data Frames for Spatial Point Data

We described data frames on p. 25, and we now show how our SpatialPoints

object can be taught to behave like a data.frame. Here we use numbers in
sequence to index the points and the rows of our data frame, because neither
the place names nor the countries are unique.

> str(row.names(CRAN_df))

chr [1:54] "1" "2" ...

What we would like to do is to associate the correct rows of our data frame
object with ‘their’ point coordinates – it often happens that data are collected
from different sources, and the two need to be merged. The SpatialPoints-

DataFrame class is the container for this kind of spatial point information, and
can be constructed in a number of ways, for example from a data frame and a
matrix of coordinates. If the matrix of point coordinates has row names and
the match.ID argument is set to its default value of TRUE, then the matrix row
names are checked against the row names of the data frame. If they match,
but are not in the same order, the data frame rows are re-ordered to suit
the points. If they do not match, no SpatialPointsDataFrame is constructed.
Note that the new object takes two indices, the first for the spatial object,
the second, if given, for the column. Giving a single index number, or range

34 2 Classes for Spatial Data in R

of numbers, or column name or names returns a new SpatialPointsDataFrame

with the requested columns. Using other extraction operators, especially the $

operator, returns the data frame column referred to. These operators mimic
the equivalent ones for other standard S classes as far as possible.

> CRAN_spdf1 <- SpatialPointsDataFrame(CRAN_mat, CRAN_df,

+ proj4string = llCRS, match.ID = TRUE)

> CRAN_spdf1[4,]

coordinates place north east loc long

4 (-49.2667, -25.4167) Curitiba 25d25'S 49d16'W Brazil -49.26667

lat

4 -25.41667

> str(CRAN_spdf1$loc)

Factor w/ 30 levels "Australia","Austria",..: 1 1 2 3 3 ...

> str(CRAN_spdf1[["loc"]])

Factor w/ 30 levels "Australia","Austria",..: 1 1 2 3 3 ...

If we re-order the data frame at random using sample, we still get the same
result, because the data frame is re-ordered to match the row names of the
points:

> s <- sample(nrow(CRAN_df))

> CRAN_spdf2 <- SpatialPointsDataFrame(CRAN_mat, CRAN_df[s,

+], proj4string = llCRS, match.ID = TRUE)

> all.equal(CRAN_spdf2, CRAN_spdf1)

[1] TRUE

> CRAN_spdf2[4,]

coordinates place north east loc long

4 (-49.2667, -25.4167) Curitiba 25d25'S 49d16'W Brazil -49.26667

lat

4 -25.41667

But if we have non-matching ID values, created by pasting pairs of letters
together and sampling an appropriate number of them, the result is an error:

> CRAN_df1 <- CRAN_df

> row.names(CRAN_df1) <- sample(c(outer(letters, letters,

+ paste, sep = "")), nrow(CRAN_df1))

> CRAN_spdf3 <- SpatialPointsDataFrame(CRAN_mat, CRAN_df1,

+ proj4string = llCRS, match.ID = TRUE)

Error in SpatialPointsDataFrame(CRAN_mat, CRAN_df1,

proj4string = llCRS, : row.names of data and coords do not

match

2.4 SpatialPoints 35

coords

Spatial

coords.nrs

data

SpatialPoints bbox

proj4string

SpatialPointsDataFrame

data.frame

Spatial

SpatialPoints

Fig. 2.2. Spatial points classes and their slots; arrows show subclass extensions

Let us examine the contents of objects of the SpatialPointsDataFrame class,
shown in Fig. 2.2. Because the class extends SpatialPoints, it also inherits the
information contained in the Spatial class object. The data slot is where the
information from the data frame is kept, in a data.frame object.

> getClass("SpatialPointsDataFrame")

Slots:

Name: data coords.nrs coords bbox proj4string

Class: data.frame numeric matrix matrix CRS

Extends:

Class "SpatialPoints", directly

Class "Spatial", by class "SpatialPoints", distance 2

Known Subclasses:

Class "SpatialPixelsDataFrame", directly, with explicit coerce

The Spatial*DataFrame classes have been designed to behave as far as possi-
ble like data frames, both with respect to standard methods such as names,
and more demanding modelling functions like model.frame used in very many
model fitting functions using formula and data arguments:

> names(CRAN_spdf1)

[1] "place" "north" "east" "loc" "long" "lat"

> str(model.frame(lat ~ long, data = CRAN_spdf1), give.attr = FALSE)

'data.frame': 54 obs. of 2 variables:

$ lat :num -27.5 -37.8 ...

$ long:num 153 145 ...

Making our SpatialPointsDataFrame object from a matrix of coordinates and
a data frame with or without ID checking is only one way to reach our goal,
and others may be more convenient. We can construct the object by giving the
SpatialPointsDataFrame function a SpatialPoints object as its first argument:

36 2 Classes for Spatial Data in R

> CRAN_spdf4 <- SpatialPointsDataFrame(CRAN_sp, CRAN_df)

> all.equal(CRAN_spdf4, CRAN_spdf2)

[1] TRUE

We can also assign coordinates to a data frame – this approach modifies the
original data frame. The coordinate assignment function can take a matrix
of coordinates with the same number of rows as the data frame on the right-
hand side, or an integer vector of column numbers for the coordinates, or
equivalently a character vector of column names, assuming that the required
columns already belong to the data frame.

> CRAN_df0 <- CRAN_df

> coordinates(CRAN_df0) <- CRAN_mat

> proj4string(CRAN_df0) <- llCRS

> all.equal(CRAN_df0, CRAN_spdf2)

[1] TRUE

> str(CRAN_df0, max.level = 2)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 54 obs. of 6 variables:

..@ coords.nrs :num(0)

..@ coords :num [1:54, 1:2] 153 145 ...

.. ..- attr(*, "dimnames")=List of 2

..@ bbox :num [1:2, 1:2] -123.0 -37.8 ...

.. ..- attr(*, "dimnames")=List of 2

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

Objects created in this way differ slightly from those we have seen before,
because the coords.nrs slot is now used, and the coordinates are moved from
the data slot to the coords slot, but the objects are otherwise the same:

> CRAN_df1 <- CRAN_df

> names(CRAN_df1)

[1] "place" "north" "east" "loc" "long" "lat"

> coordinates(CRAN_df1) <- c("long", "lat")

> proj4string(CRAN_df1) <- llCRS

> str(CRAN_df1, max.level = 2)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 54 obs. of 4 variables:

..@ coords.nrs :int [1:2] 5 6

..@ coords :num [1:54, 1:2] 153 145 ...

.. ..- attr(*, "dimnames")=List of 2

..@ bbox :num [1:2, 1:2] -123.0 -37.8 ...

.. ..- attr(*, "dimnames")=List of 2

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

2.4 SpatialPoints 37

Transect and tracking data may also be represented as points, because the
observation at each point contributes information that is associated with the
point itself, rather than the line as a whole. Sequence numbers can be entered
into the data frame to make it possible to trace the points in order, for example
as part of a SpatialLines object as we see in the Sect. 2.5.

As an example, we use a data set5 from satellite telemetry of a single
loggerhead turtle crossing the Pacific from Mexico to Japan (Nichols et al.,
2000).

> turtle_df <- read.csv("seamap105_mod.csv")

> summary(turtle_df)

id lat lon

Min. : 1.00 Min. :21.57 Min. :-179.88

1st Qu.: 99.25 1st Qu.:24.36 1st Qu.:-147.38

Median :197.50 Median :25.64 Median :-119.64

Mean :197.50 Mean :27.21 Mean : -21.52

3rd Qu.:295.75 3rd Qu.:27.41 3rd Qu.: 153.66

Max. :394.00 Max. :39.84 Max. : 179.93

obs_date

01/02/1997 04:16:53: 1

01/02/1997 05:56:25: 1

01/04/1997 17:41:54: 1

01/05/1997 17:20:07: 1

01/06/1997 04:31:13: 1

01/06/1997 06:12:56: 1

(Other) :388

Before creating a SpatialPointsDataFrame, we will timestamp the observations,
and re-order the input data frame by timestamp to make it easier to add
months to Fig. 2.3, to show progress westwards across the Pacific:

> timestamp <- as.POSIXlt(strptime(as.character(turtle_df$obs_date),

+ "%m/%d/%Y %H:%M:%S"), "GMT")

> turtle_df1 <- data.frame(turtle_df, timestamp = timestamp)

> turtle_df1$lon <- ifelse(turtle_df1$lon < 0, turtle_df1$lon +

+ 360, turtle_df1$lon)

> turtle_sp <- turtle_df1[order(turtle_df1$timestamp),

+]

> coordinates(turtle_sp) <- c("lon", "lat")

> proj4string(turtle_sp) <- CRS("+proj=longlat +ellps=WGS84")

The input data file is as downloaded, but without columns with identical
values for all points, such as the number of the turtle (07667). We return to
this data set in Chap. 6, examining the interesting contributed package trip
by Michael Sumner, which proposes customised classes and methods for data
of this kind.
5 Data downloaded with permission from SEAMAP (Read et al., 2003), data set

105.

38 2 Classes for Spatial Data in R

140°E 160°W 140°W 120°W

20
°N

30
°N

40
°N

50
°N

60
°N

Sep
te

m
be

r

Octo
be

r

Nov
em

be
r

Dec
em

be
r

Ja
nu

ar
y

Feb
ru

ar
y

M
ar

chApr
il

M
ay

Ju
ne

Ju
ly

Aug
us

t

180°160°E

Fig. 2.3. Westward movements of a captive-raised adult loggerhead turtle (Caretta
caretta) from 10 August 1996 to 12 August 1997

2.5 SpatialLines

Lines have been represented in S in a simple form as a sequence of points
(see Becker et al. (1988), Murrell (2006, pp. 83–86)), based on lowering the
graphic ‘pen’ at the first point and drawing to the successive points until an
NA is met. Then the pen is raised and moved to the next non-NA value, where
it is lowered, until the end of the set of points. While this is convenient for
graphics output, it is less so for associating lines with data values, because
the line is not subsetted into data objects in any other way than by NA values.

The approach adopted here is to start with a Line object that is a matrix
of 2D coordinates, without NA values. A list of Line objects forms the Lines

slot of a Lines object. An identifying character tag is also required, and will
be used for constructing SpatialLines objects using the same approach as was
used above for matching ID values for spatial points.

> getClass("Line")

Slots:

Name: coords

Class: matrix

Known Subclasses: "Polygon"

> getClass("Lines")

Slots:

Name: Lines ID

Class: list character

2.5 SpatialLines 39

Neither Line nor Lines objects inherit from the Spatial class. It is the Spa-

tialLines object that contains the bounding box and projection information
for the list of Lines objects stored in its lines slot. This degree of complex-
ity is required to be able to add observation values in a data frame, creating
SpatialLinesDataFrame objects, and to use a range of extraction methods on
these objects.

> getClass("SpatialLines")

Slots:

Name: lines bbox proj4string

Class: list matrix CRS

Extends: "Spatial"

Known Subclasses: "SpatialLinesDataFrame"

Let us examine an example of an object of this class, created from lines
retrieved from the maps package world database, and converted to a Spa-

tialLines object using the map2SpatialLines function in maptools. We can
see that the lines slot of the object is a list of 51 components, each of which
must be a Lines object in a valid SpatialLines object.

> library(maps)

> japan <- map("world", "japan", plot = FALSE)

> p4s <- CRS("+proj=longlat +ellps=WGS84")

> SLjapan <- map2SpatialLines(japan, proj4string = p4s)

> str(SLjapan, max.level = 2)

Formal class 'SpatialLines' [package "sp"] with 3 slots

..@ lines :List of 51

..@ bbox :num [1:2, 1:2] 123.0 24.3 ...

.. ..- attr(*, "dimnames")=List of 2

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

SpatialLines and SpatialPolygons objects are very similar, as can be seen
in Fig. 2.4 – the lists of component entities stack up in a hierarchical fashion.
A very typical way of exploring the contents of these objects is to use lapply or
sapply in combination with slot. The lapply and sapply functions apply their
second argument, which is a function, to each of the elements of their first
argument. The command used here can be read as follows: return the length
of the Lines slot – how many Line objects it contains – of each Lines object
in the list in the lines slot of SLjapan, simplifying the result to a numeric
vector. If lapply was used, the result would have been a list. As we see, no
Lines object contains more than one Line object:

> Lines_len <- sapply(slot(SLjapan, "lines"),function(x) length(slot(x,

+ "Lines")))

> table(Lines_len)

40 2 Classes for Spatial Data in R

coords

Spatial

lines

plotOrder

Spatial

polygons

bbox

proj4string

LineLines

ID

Polygons

plotOrder

labpt
ID

area

SpatialLines

Spatial

Lines

Polygons

Polygon

coords

labpt

area

hole

ringDir

SpatialPolygons

Fig. 2.4. SpatialLines and SpatialPolygons classes and slots; thin arrows show sub-
class extensions, thick arrows the inclusion of lists of objects

Lines_len

1

51

We can use the ContourLines2SLDF function included in maptools in our next
example, converting data returned by the base graphics function contourLines

into a SpatialLinesDataFrame object; we used the volcano data set in Chap. 1,
Fig. 1.3:

> volcano_sl <- ContourLines2SLDF(contourLines(volcano))

> t(slot(volcano_sl, "data"))

C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10

level "100" "110" "120" "130" "140" "150" "160" "170" "180" "190"

We can see that there are ten separate contour level labels in the variable in
the data slot, stored as a factor in the data frame in the object’s data slot. As
mentioned above, sp classes are new-style classes, and so the slots function
can be used to look inside their slots.

To import data that we will be using shortly, we use another utility
function in maptools, which reads shoreline data in ‘Mapgen’ format from the
National Geophysical Data Center coastline extractor6 into a SpatialLines

object directly, here selected for the window shown as the object bounding
box:

6 http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html.

2.6 SpatialPolygons 41

a) b)

Fig. 2.5. Two maps of shorelines around Auckland: (a) line representation, (b) line
representation over-plotted with islands converted to polygons and shaded. Note
that Waiheke Island, the large island to the east, is not closed, and so not found as
an island

> llCRS <- CRS("+proj=longlat +ellps=WGS84")

> auck_shore <- MapGen2SL("auckland_mapgen.dat", llCRS)

> summary(auck_shore)

Object of class SpatialLines

Coordinates:

min max

r1 174.2 175.3

r2 -37.5 -36.5

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

The shorelines are still just represented by lines, shown in Fig. 2.5, and so
colour filling of apparent polygons formed by line rings is not possible. For
this we need a class of polygon objects, discussed in Sect. 2.6. Lines, however,
can be generalised by removing detail that is not required for analysis or
visualisation – the maps and RArcInfo packages contain functions for line
thinning. This operation can be performed successfully only on lines, because
neighbouring polygons may have their shared boundary thinned differently.
This leads to the creation of slivers, thin zones belonging to neither polygon
or to both.

2.6 SpatialPolygons

The basic representation of a polygon in S is a closed line, a sequence of
point coordinates where the first point is the same as the last point. A set

42 2 Classes for Spatial Data in R

of polygons is made of closed lines separated by NA points. Like lines, it is
not easy to work with polygons represented this way. To have a data set to
use for polygons, we first identify the lines imported above representing the
shoreline around Auckland. Many are islands, and so have identical first and
last coordinates.

> lns <- slot(auck_shore, "lines")

> table(sapply(lns, function(x) length(slot(x, "Lines"))))

1

80

> islands_auck <- sapply(lns, function(x) {

+ crds <- slot(slot(x, "Lines")[[1]], "coords")

+ identical(crds[1,], crds[nrow(crds),])

+ })

> table(islands_auck)

islands_auck

FALSE TRUE

16 64

Since all the Lines in the auck_shore object contain only single Line objects,
checking the equality of the first and last coordinates of the first Line object
in each Lines object tells us which sets of coordinates can validly be made
into polygons. The nesting of classes for polygons is the same as that for lines,
but the successive objects have more slots.

> getClass("Polygon")

Slots:

Name: labpt area hole ringDir coords

Class: numeric numeric logical integer matrix

Extends: "Line"

The Polygon class extends the Line class by adding slots needed for polygons
and checking that the first and last coordinates are identical. The extra slots
are a label point, taken as the centroid of the polygon, the area of the poly-
gon in the metric of the coordinates, whether the polygon is declared as a
hole or not – the default value is a logical NA, and the ring direction of the
polygon (discussed later in Sect. 2.6.2). No check is made of whether lines
cross or polygons have ‘errors’, in other words whether features are simple in
the OpenGIS® (OpenGeoSpatial)7 context; these are discussed briefly later
on p. 122. GIS should do this, and we assume that data read into R can be
trusted and contain only simple features.

> getClass("Polygons")

7 http://www.opengeospatial.org/.

2.6 SpatialPolygons 43

Slots:

Name: Polygons plotOrder labpt ID area

Class: list integer numeric character numeric

The Polygons class contains a list of valid Polygon objects, an identifying
character string, a label point taken as the label point of the constituent
polygon with the largest area, and two slots used as helpers in plotting using
R graphics functions, given this representation of sets of polygons. These set
the order in which the polygons belonging to this object should be plotted,
and the gross area of the polygon, equal to the sum of all the constituent
polygons. A Polygons object may, for example, represent an administrative
district located on two sides of a river, or archipelago. Each of the parts
should be seen separately, but data are only available for the larger entity.

> getClass("SpatialPolygons")

Slots:

Name: polygons plotOrder bbox proj4string

Class: list integer matrix CRS

Extends: "Spatial"

Known Subclasses: "SpatialPolygonsDataFrame"

The top level representation of polygons is as a SpatialPolygons object, a set
of Polygons objects with the additional slots of a Spatial object to contain
the bounding box and projection information of the set as a whole. Like the
Polygons object, it has a plot order slot, defined by default to plot its member
polygons, stored in the polygons as a list of Polygons, in order of gross area,
from largest to smallest. Choosing only the lines in the Auckland shoreline
data set which are closed polygons, we can build a SpatialPolygons object.

> islands_sl <- auck_shore[islands_auck]

> list_of_Lines <- slot(islands_sl, "lines")

> islands_sp <- SpatialPolygons(lapply(list_of_Lines, function(x) {

+ Polygons(list(Polygon(slot(slot(x, "Lines")[[1]],

+ "coords"))), ID = slot(x, "ID"))

+ }), proj4string = CRS("+proj=longlat +ellps=WGS84"))

> summary(islands_sp)

Object of class SpatialPolygons

Coordinates:

min max

r1 174.30297 175.22791

r2 -37.43877 -36.50033

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

44 2 Classes for Spatial Data in R

> slot(islands_sp, "plotOrder")

[1] 45 54 37 28 38 27 12 11 59 53 5 25 26 46 7 55 17 34 30 16 6 43

[23] 14 40 32 19 61 42 15 50 21 18 62 23 22 29 24 44 13 2 36 9 63 58

[45] 56 64 52 39 51 1 8 3 4 20 47 35 41 48 60 31 49 57 10 33

> order(sapply(slot(islands_sp, "polygons"), function(x) slot(x,

+ "area")), decreasing = TRUE)

[1] 45 54 37 28 38 27 12 11 59 53 5 25 26 46 7 55 17 34 30 16 6 43

[23] 14 40 32 19 61 42 15 50 21 18 62 23 22 29 24 44 13 2 36 9 63 58

[45] 56 64 52 39 51 1 8 3 4 20 47 35 41 48 60 31 49 57 10 33

As we saw with the construction of SpatialLines objects from raw co-
ordinates, here we build a list of Polygon objects for each Polygons object,
corresponding to a single identifying tag. A list of these Polygons objects is
then passed to the SpatialPolygons function, with a coordinate reference sys-
tem, to create the SpatialPolygons object. Again, like SpatialLines objects,
SpatialPolygons objects are most often created by functions that import or
manipulate such data objects, and seldom from scratch.

2.6.1 SpatialPolygonsDataFrame Objects

As with other spatial data objects, SpatialPolygonsDataFrame objects bring
together the spatial representations of the polygons with data. The identify-
ing tags of the Polygons in the polygon slot of a SpatialPolygons object are
matched with the row names of the data frame to make sure that the correct
data rows are associated with the correct spatial objects. The data frame is
re-ordered by row to match the spatial objects if need be, provided all the
objects can be matched to row names. If any differences are found, an error
results. Both identifying tags and data frame row names are character strings,
and so their sort order is also character, meaning that "2" follows "11" and
"111".8

As an example, we take a set of scores by US state of 1999 Scholastic
Aptitude Test (SAT) used for spatial data analysis by Melanie Wall.9 In the
data source, there are also results for Alaska, Hawaii, and for the US as a
whole. If we would like to associate the data with state boundary polygons
provided in the maps package, it is convenient to convert the boundaries to a
SpatialPolygons object – see also Chap. 4.

> library(maps)

> library(maptools)

> state.map <- map("state", plot = FALSE, fill = TRUE)

8 Some maptools functions use Gregory R. Warnes’ mixedorder sort from gtools to
sort integer-like strings in integer order.

9 http://www.biostat.umn.edu/~melanie/Data/, data here supplemented with
variable names and state names as used in maps.

2.6 SpatialPolygons 45

> IDs <- sapply(strsplit(state.map$names, ":"), function(x) x[1])

> state.sp <- map2SpatialPolygons(state.map, IDs = IDs,

+ proj4string = CRS("+proj=longlat +ellps=WGS84"))

Then we can use identifying tag matching to suit the rows of the data frame
to the SpatialPolygons. Here, the rows of the data frame for which there are
no matches will be dropped; all the Polygons objects are matched:

> sat <- read.table("state.sat.data_mod.txt", row.names = 5,

+ header = TRUE)

> str(sat)

'data.frame': 52 obs. of 4 variables:

$ oname :Factor w/ 52 levels "ala","alaska",..: 1 2 3 4 5 ...

$ vscore:int 561 516 524 563 497 ...

$ mscore:int 555 514 525 556 514 ...

$ pc :int 9 50 34 6 49 ...

> id <- match(row.names(sat), sapply(slot(state.sp, "polygons"),

+ function(x) slot(x, "ID")))

> row.names(sat)[is.na(id)]

[1] "alaska" "hawaii" "usa"

> state.spdf <- SpatialPolygonsDataFrame(state.sp, sat)

> str(slot(state.spdf, "data"))

'data.frame': 49 obs. of 4 variables:

$ oname :Factor w/ 52 levels "ala","alaska",..: 1 3 4 5 6 ...

$ vscore:int 561 524 563 497 536 ...

$ mscore:int 555 525 556 514 540 ...

$ pc :int 9 34 6 49 32 ...

> str(state.spdf, max.level = 2)

Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 49 obs. of 4 variables:

..@ polygons :List of 49

..@ plotOrder :int [1:49] 42 25 4 30 27 ...

..@ bbox :num [1:2, 1:2] -124.7 25.1 ...

.. ..- attr(*, "dimnames")=List of 2

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

If we modify the row name of ‘arizona’ in the data frame to ‘Arizona’, there
is no longer a match with a polygon identifying tag, and an error is signalled.

> rownames(sat)[3] <- "Arizona"

> SpatialPolygonsDataFrame(state.sp, sat)

46 2 Classes for Spatial Data in R

Error in SpatialPolygonsDataFrame(state.sp, sat) : row.names

of data and Polygons IDs do not match

In subsequent analysis, Wall (2004) also drops District of Columbia. Rather
than having to manipulate polygons and their data separately, when using a
SpatialPolygonsDataFrame object, we can say:

> DC <- "district of columbia"

> not_dc <- !(row.names(slot(state.spdf, "data")) == DC)

> state.spdf1 <- state.spdf[not_dc,]

> length(slot(state.spdf1, "polygons"))

[1] 48

> summary(state.spdf1)

Object of class SpatialPolygonsDataFrame

Coordinates:

min max

r1 -124.68134 -67.00742

r2 25.12993 49.38323

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

Data attributes:

oname vscore mscore pc

ala : 1 Min. :479.0 Min. :475.0 Min. : 4.00

ariz : 1 1st Qu.:506.2 1st Qu.:505.2 1st Qu.: 9.00

ark : 1 Median :530.5 Median :532.0 Median :28.50

calif : 1 Mean :534.6 Mean :534.9 Mean :35.58

colo : 1 3rd Qu.:563.0 3rd Qu.:558.5 3rd Qu.:63.50

conn : 1 Max. :594.0 Max. :605.0 Max. :80.00

(Other):42

2.6.2 Holes and Ring Direction

The hole and ring direction slots are included in Polygon objects as heuris-
tics to address some of the difficulties arising from S not being a GIS. In
a traditional vector GIS, and in the underlying structure of the data stored
in maps, boundaries between polygons are stored only once as arcs between
nodes (shared vertices between three or more polygons, possibly including the
external space), and the polygons are constructed on the fly from lists of di-
rected boundary arcs, including boundaries with the external space – void –
not included in any polygon. This is known as the topological representation
of polygons, and is appropriate for GIS software, but arguably not for other
software using spatial data. It was mentioned above that it is the user’s re-
sponsibility to provide line coordinates such that the coordinates represent
the line object the user requires. If the user requires, for example, that a river
channel does not cross itself, the user has to impose that limitation. Other

2.7 SpatialGrid and SpatialPixel Objects 47

users will not need such a limitation, as for example tracking data may very
well involve an animal crossing its tracks.

The approach that has been chosen in sp is to use two markers com-
monly encountered in practice, marking polygons as holes with a logical
(TRUE/FALSE) flag, the hole slot, and using ring direction – clockwise rings
are taken as not being holes, anti-clockwise as being holes. This is needed
because the non-topological representation of polygons has no easy way of
knowing that a polygon represents an internal boundary of an enclosing poly-
gon, a hole, or lake.

An approach that works when the relative status of polygons is known is
to set the hole slot directly. This is done in reading GSHHS shoreline data,
already used in Fig. 2.3 and described in Chap. 4. The data source includes a
variable for each polygon, where the levels are land: 1, lake: 2, island in lake: 3,
and lake on island in lake: 4. The following example takes a region of interest
on the northern, Canadian shore of Lake Huron, including Manitoulin Island,
and a number of lakes on the island, including Kongawong Lake.

> length(slot(manitoulin_sp, "polygons"))

[1] 1

> sapply(slot(slot(manitoulin_sp, "polygons")[[1]], "Polygons"),

+ function(x) slot(x, "hole"))

[1] FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE

[12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

> sapply(slot(slot(manitoulin_sp, "polygons")[[1]], "Polygons"),

+ function(x) slot(x, "ringDir"))

[1] 1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1

In Fig. 2.6, there is only one Polygons object in the polygons slot of mani-

toulin_sp, representing the continental landmass, exposed along the northern
edge, and containing the complete set of polygons. Within this is a large sec-
tion covered by Lake Huron, which in turn is covered by islands and lakes on
islands. Not having a full topological representation means that for plotting,
we paint the land first, then paint the lake, then the islands, and finally the
lakes on islands. Because the default plotting colour for holes is ‘transparent’,
they can appear to be merged into the surrounding land – the same problem
arises where the hole slot is wrongly assigned. The plotOrder slots in Polygons

and SpatialPolygons objects attempt to get around this problem, but care is
usually sensible if the spatial objects being handled are complicated.

2.7 SpatialGrid and SpatialPixel Objects

The point, line, and polygon objects we have considered until now have been
handled one-by-one. Grids are regular objects requiring much less information
to define their structure. Once the single point of origin is known, the extent

48 2 Classes for Spatial Data in R

3
4

4

3

4

3

3
3

3

3
3

3

3

3

3

3

3

Fig. 2.6. The northern, Canadian shore of Lake Huron, including Manitoulin Island
and lakes on the island; islands (light grey) and lakes on islands (dark grey) are
marked with their GSHHS levels

of the grid can be given by the cell resolution and the numbers of rows and
columns present in the full grid. This representation is typical for remote sens-
ing and raster GIS, and is used widely for storing data in regular rectangular
cells, such as digital elevation models, satellite imagery, and interpolated data
from point measurements, as well as image processing.

> getClass("GridTopology")

Slots:

Name: cellcentre.offset cellsize cells.dim

Class: numeric numeric integer

As an example, we make a GridTopology object from the bounding box of
the Manitoulin Island vector data set. If we choose a cell size of 0.01◦ in each
direction, we can offset the south-west cell centre to make sure that at least the
whole area is covered, and find a suitable number of cells in each dimension.

> bb <- bbox(manitoulin_sp)

> bb

min max

r1 277.0 278.0

r2 45.7 46.2

> cs <- c(0.01, 0.01)

> cc <- bb[, 1] + (cs/2)

> cd <- ceiling(diff(t(bb))/cs)

> manitoulin_grd <- GridTopology(cellcentre.offset = cc,

2.7 SpatialGrid and SpatialPixel Objects 49

+ cellsize = cs, cells.dim = cd)

> manitoulin_grd

r1 r2

cellcentre.offset 277.005 45.705

cellsize 0.010 0.010

cells.dim 100.000 50.000

The object describes the grid completely, and can be used to construct a
SpatialGrid object. A SpatialGrid object contains GridTopology and Spatial

objects, together with two helper slots, grid.index and coords. These are set
to zero and to the bounding box of the cell centres of the grid, respectively.

> getClass("SpatialGrid")

Slots:

Name: grid grid.index coords bbox

Class: GridTopology integer matrix matrix

Name: proj4string

Class: CRS

Extends:

Class "SpatialPixels", directly, with explicit coerce

Class "SpatialPoints", by class "SpatialPixels", distance 2, with

explicit coerce

Class "Spatial", by class "SpatialPixels", distance 3, with explicit

coerce

Known Subclasses: "SpatialGridDataFrame"

Using the GridTopology object created above, and passing through the co-
ordinate reference system of the original GSHHS data, the bounding box is
created automatically, as we see from the summary of the object:

> p4s <- CRS(proj4string(manitoulin_sp))

> manitoulin_SG <- SpatialGrid(manitoulin_grd, proj4string = p4s)

> summary(manitoulin_SG)

Object of class SpatialGrid

Coordinates:

min max

r1 277.0 278.0

r2 45.7 46.2

Is projected: FALSE

proj4string : [+proj=longlat +datum=WGS84]

Number of points: 2

Grid attributes:

cellcentre.offset cellsize cells.dim

r1 277.005 0.01 100

r2 45.705 0.01 50

50 2 Classes for Spatial Data in R

Fig. 2.7. SRTM elevation data in metres for the Auckland isthmus over-plotted with
an excerpt from the GSHHS full resolution shoreline, including two lakes – there are
detailed differences stemming from the very different technologies underlying the
two data sources. A transect is marked for later use

As an example of using these classes with imported data, we use an excerpt
from the Shuttle Radar Topography Mission (SRTM) flown in 2000, for the
Auckland area10 (Fig. 2.7). The data have been read from a Geotiff file into a
SpatialGridDataFrame object – a SpatialGrid object extended with a data slot
occupied by a data.frame object, filled with a single band of data representing
elevation in metres.After checking the class of the data object, we examine in
turn its slots. The grid slot contains the underlying GridTopology object, with
the lower left cell centre coordinates, the pair of cell size resolution values,
here both equal to 3 arcsec, and the numbers of columns and rows:

10 Downloaded from the seamless data distribution system for 3 arcsec ‘Finished’
(90m) data, http://seamless.usgs.gov/; the data can be downloaded as one
degree square tiles, or cropped from a seamless raster database, as has been done
here to avoid patching tiles together.

2.7 SpatialGrid and SpatialPixel Objects 51

> class(auck_el1)

[1] "SpatialGridDataFrame"

attr(,"package")

[1] "sp"

> slot(auck_el1, "grid")

x y

cellcentre.offset 1.742004e+02 -3.749958e+01

cellsize 8.333333e-04 8.333333e-04

cells.dim 1.320000e+03 1.200000e+03

> slot(auck_el1, "grid.index")

integer(0)

> slot(auck_el1, "coords")

x y

[1,] 174.2004 -37.49958

[2,] 175.2996 -36.50042

> slot(auck_el1, "bbox")

min max

x 174.2 175.3

y -37.5 -36.5

> object.size(auck_el1)

[1] 12674948

> object.size(slot(auck_el1, "data"))

[1] 12672392

The grid.index slot is empty, while the coords slot is as described earlier. It
differs from the bounding box of the grid as a whole, contained in the bbox

slot, by half a cell resolution value in each direction. The total size of the
SpatialGridDataFrame object is just over 12 MB, almost all of which is made
up of the data slot.

> is.na(auck_el1$band1) <- auck_el1$band1 <= 0 | auck_el1$band1 >

+ 10000

> summary(auck_el1$band1)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
1.00 23.00 53.00 78.05 106.00 686.00 791938.00

Almost half of the data are at or below sea level, and other values are spikes
in the radar data, and should be set to NA. Once this is done, about half of
the data are missing. In other cases, even larger proportions of raster grids are
missing, suggesting that an alternative representation of the same data might

52 2 Classes for Spatial Data in R

SpatialPixelsDataFrame

data

SpatialPixels

SpatialGrid

dirgatad

grid.index

SpatialPoints

grid

grid.index

SpatialPoints

cellcentre.offset

cellsize

cells.dim

coords

Spatial

bbox

proj4string

data.frame

Spatial

GridTopology

SpatialPoints

SpatialGridDataFrame

SpatialGrid

SpatialPixels

Fig. 2.8. SpatialGrid and SpatialPixel classes and their slots; arrows show sub-
class extensions

be attractive. One candidate from Terralib, discussed further in Chap. 4, is the
cell representation of rasters, where the raster cells with data are represented by
the coordinates of the cell centre, and by the sequence number of the cell among
all the cells in the raster. In this representation, missing data are discarded,
and savings in space and processing time can be large. It also permits cells
to be stored, like points, in an external database. The class is here termed
SpatialPixels, and has the same slots as SpatialGrid objects, but differently
filled (Fig. 2.8). The SpatialPixelsDataFrame class is analogous.

> auck_el2 <- as(auck_el1, "SpatialPixelsDataFrame")

> object.size(auck_el2)

[1] 25349276

> object.size(slot(auck_el2, "grid.index"))

[1] 3168272

> object.size(slot(auck_el2, "coords"))

[1] 12673288

> sum(is.na(auck_el1$band1)) + nrow(slot(auck_el2, "coords"))

[1] 1584000

> prod(slot(slot(auck_el2, "grid"), "cells.dim"))

[1] 1584000

Returning to our example, we can coerce our SpatialGridDataFrame object to
a SpatialPixelsDataFrame object. In this case, the proportion of missing to
occupied cells is unfavourable, and when the grid.index and coords slots are

2.7 SpatialGrid and SpatialPixel Objects 53

populated with cell indices and coordinates, the output object is almost twice
as large as its SpatialGridDataFrame equivalent. We can also see that the total
number of cells – the product of the row and column dimensions – is equal to
the number of coordinates in the output object plus the number of missing
data values deleted by coercion. Had the number of attributes been 10, then
the space saving relative to storing the full grid would have been 37%; with
100 attributes it would have been 48% for this particular case.

> auck_el_500 <- auck_el2[auck_el2$band1 > 500,]

Warning messages:

1: grid has empty column/rows in dimension 1 in:

points2grid(points, tolerance)

2: grid has empty column/rows in dimension 2 in:

points2grid(points, tolerance)

> summary(auck_el_500)

Object of class SpatialPixelsDataFrame

Coordinates:

min max

x 175.18917 175.24333

y -37.10333 -37.01833

Is projected: FALSE

proj4string :

[+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs]

Number of points: 1114

Grid attributes:

cellcentre.offset cellsize cells.dim

x 175.18958 0.0008333333 65

y -37.10292 0.0008333333 102

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

501.0 523.0 552.0 559.4 591.0 686.0

> object.size(auck_el_500)

[1] 38940

Taking just the raster cells over 500 m, of which there are very few, less than
1% of the total, yields a much smaller object. In this case it has a smaller
bounding box, and gaps between the pixels present, as the warning messages
indicate.

We can also create a SpatialPixels object directly from a SpatialPoints

object. As our example, we use the Meuse bank data set provided with sp.
We can pass a SpatialPoints object to the SpatialPixels function, where
the Spatial object components are copied across, and the points checked to
see whether they lie on a regular grid. If they do, the function will return a
SpatialPixels object:

54 2 Classes for Spatial Data in R

> data(meuse.grid)

> mg_SP <- SpatialPoints(cbind(meuse.grid$x, meuse.grid$y))

> summary(mg_SP)

Object of class SpatialPoints

Coordinates:

min max

coords.x1 178460 181540

coords.x2 329620 333740

Is projected: NA

proj4string : [NA]

Number of points: 3103

> mg_SPix0 <- SpatialPixels(mg_SP)

> summary(mg_SPix0)

Object of class SpatialPixels

Coordinates:

min max

coords.x1 178440 181560

coords.x2 329600 333760

Is projected: NA

proj4string : [NA]

Number of points: 3103

Grid attributes:

cellcentre.offset cellsize cells.dim

coords.x1 178460 40 78

coords.x2 329620 40 104

> prod(slot(slot(mg_SPix0, "grid"), "cells.dim"))

[1] 8112

As we can see from the product of the cell dimensions of the underlying grid,
over half of the full grid is not present in the SpatialPixels representation,
because many grid cells lie outside the study area. Alternatively, we can coerce
a SpatialPoints object to a SpatialPixels object:

> mg_SPix1 <- as(mg_SP, "SpatialPixels")

> summary(mg_SPix1)

Object of class SpatialPixels

Coordinates:

min max

coords.x1 178440 181560

coords.x2 329600 333760

Is projected: NA

proj4string : [NA]

Number of points: 3103

Grid attributes:

cellcentre.offset cellsize cells.dim

coords.x1 178460 40 78

coords.x2 329620 40 104

2.7 SpatialGrid and SpatialPixel Objects 55

We have now described a coherent and consistent set of classes for spatial data.
Other representations are also used by R packages, and we show further ways
of converting between these representations and external formats in Chap. 4.
Before treating data import and export, we discuss graphical methods for sp
classes, to show that the effort of putting the data in formal classes may be
justified by the relative ease with which we can make maps.

3

Visualising Spatial Data

A major pleasure in working with spatial data is their visualisation. Maps
are amongst the most compelling graphics, because the space they map is
the space we think we live in, and maps may show things we cannot see
otherwise. Although one can work with all R plotting functions on the raw
data, for example extracted from Spatial classes by methods like coordinates

or as.data.frame, this chapter introduces the plotting methods for objects
inheriting from class Spatial that are provided by package sp.

R has two plotting systems: the ‘traditional’ plotting system and the Trellis
Graphics system, provided by package lattice, which is present in default R
installations (Sarkar, 2008). The latter builds upon the ‘grid’ graphics model
(Murrell, 2006). Traditional graphics are typically built incrementally: graphic
elements are added in several consecutive function calls. Trellis graphics allow
plotting of high-dimensional data by providing conditioning plots: organised
lattices of plots with shared axes (Cleveland, 1993, 1994). This feature is
particularly useful when multiple maps need to be compared, for example in
case of a spatial time series, comparison across a number of species or variables,
or comparison of different modelling scenarios or approaches. Trellis graphs
are designed to avoid wasting space by repetition of identical information. The
value of this feature, rarely found in other software, is hard to overestimate.

Waller and Gotway (2004, pp. 68–86) provide an introduction to statistical
mapping, which may be deepened with reference to Slocum et al. (2005).

Package sp provides plot methods that build on the traditional R plotting
system (plot, image, lines, points, etc.), as well as a ‘new’ generic method
called spplot that uses the Trellis system (notably xyplot or levelplot from
the lattice package) and can be used for conditioning plots. The spplot meth-
ods are introduced in a later sub-section, first we deal with the traditional
plot system.

58 3 Visualising Spatial Data

3.1 The Traditional Plot System

3.1.1 Plotting Points, Lines, Polygons, and Grids

In the following example session, we create points, lines, polygons, and grid
object, from data.frame objects, retrieved from the sp package by function
data, and plot them. The four plots obtained by the plot and image commands
are shown in Fig. 3.1.

> library(sp)

> data(meuse)

points lines

polygons grid

Fig. 3.1. The meuse data set: sample points, the sample path (line), the Meuse
river (ring), and the gridded study area

3.1 The Traditional Plot System 59

> coordinates(meuse) <- c("x", "y")

> plot(meuse)

> title("points")

The SpatialPointsDataFrame object used is created from a data.frame provided
with sp, and the plot method shows the points with the default symbol.
> cc <- coordinates(meuse)

> m.sl <- SpatialLines(list(Lines(list(Line(cc)))))

> plot(m.sl)

> title("lines")

A SpatialLines object is made by joining up the points in sequence, and plot

draws the resulting zig-zags.
> data(meuse.riv)

> meuse.lst <- list(Polygons(list(Polygon(meuse.riv)),

+ "meuse.riv"))

> meuse.sr <- SpatialPolygons(meuse.lst)

> plot(meuse.sr, col = "grey")

> title("polygons")

We make a SpatialPolygons object from data provided with sp outlining the
banks of the River Meuse.
> data(meuse.grid)

> coordinates(meuse.grid) <- c("x", "y")

> meuse.grid <- as(meuse.grid, "SpatialPixels")

> image(meuse.grid, col = "grey")

> title("grid")

Finally, we convert grid data for the same Meuse bank study area into a
‘SpatialPixels’ object and display it using the image method, with all cells
set to ‘grey’.

On each map, one unit in the x-direction equals one unit in the y-
direction. This is the default when the coordinate reference system is not
longlat or is unknown. For unprojected data in geographical coordinates (lon-
gitude/latitude), the default aspect ratio depends on the (mean) latitude of
the area plotted. The default aspect can be adjusted by passing the asp

argument.
A map becomes more readable when we combine several elements. We can

display elements from those created above by using the add = TRUE argument
in function calls:
> image(meuse.grid, col = "lightgrey")

> plot(meuse.sr, col = "grey", add = TRUE)

> plot(meuse, add = TRUE)

the result of which is shown in Fig. 3.2.
The over-plotting of polygons by points is the consequence of the order

of plot commands. Up to now, the plots only show the geometry (topology,
shapes) of the objects; we start plotting attributes (e.g. what has actually
been measured at the sample points) in Sect. 3.1.5.

60 3 Visualising Spatial Data

Fig. 3.2. Map elements combined into a single map

As an alternative to plot(x,add=TRUE), one can use the commands lines

for objects of class SpatialLines and points for SpatialPoints; text elements
can be added by text.

3.1.2 Axes and Layout Elements

Maps often do not have axes, as the information carried in map axes can often
be omitted. Especially, projected coordinates are usually long, hard to read
and geographical reference is much easier when recognisable features such as
administrative boundaries, rivers, coast lines, etc. are present. In the standard
plot functions, the Boolean argument axes can be set to control axis plotting,
and the function axis can be called to add axes, fine-tuning their appearance
(tic placement, tic labels, and font size). The following commands result in
Fig. 3.3:
> layout(matrix(c(1, 2), 1, 2))

> plot(meuse.sr, axes = TRUE)

> plot(meuse.sr, axes = FALSE)

> axis(1, at = c(178000 + 0:2 * 2000), cex.axis = 0.7)

> axis(2, at = c(326000 + 0:3 * 4000), cex.axis = 0.7)

> box()

Not plotting axes does not increase the amount of space R used for plotting
the data.1 R still reserves the necessary space for adding axes and titles later
1 This is not true for Trellis plots; see Sect. 3.2.

3.1 The Traditional Plot System 61

178000

32
60

00

axes = TRUE axes added

33
80

00
33

60
00

33
40

00
33

20
00

33
00

00
32

80
00

32
60

00
33

80
00

33
40

00
33

00
00

180000 182000 178000 180000 182000

Fig. 3.3. Default axes (left) and custom axes (right) for the meuse.riv data

Table 3.1. Graphic arguments useful for controlling figure and plotting region

Argument Meaning Unit Length

fin Figure region Inch 2
pin Plotting region Inch 2
mai Plotting margins Inch 4
mar Plotting margins Lines of text 4

see ?par for more information

on. We can, however, explicitly instruct R not to reserve this space by using
function par, which is intended to have side effects on the next plot on the
current device. The par-settable arguments that are useful for controlling the
physical size of the plot are listed in Table 3.1.

In Fig. 3.4, generated by

> oldpar = par(no.readonly = TRUE)

> layout(matrix(c(1, 2), 1, 2))

> plot(meuse, axes = TRUE, cex = 0.6)

> plot(meuse.sr, add = TRUE)

> title("Sample locations")

> par(mar = c(0, 0, 0, 0) + 0.1)

> plot(meuse, axes = FALSE, cex = 0.6)

62 3 Visualising Spatial Data

178500

32
90

00

Sample locations

33
50

00
33

40
00

33
30

00
33

20
00

33
10

00
33

00
00

179500 180500 181500

Fig. 3.4. Equal-area plots with (left) and without (right) the default space R re-
serves for axes and title(s)

> plot(meuse.sr, add = TRUE)

> box()

> par(oldpar)

the same data set is plotted twice within the same amount of space, at the
left-hand side with R’s default margins leaving space for axes, and on the
right-hand side with maximised plotting space and no axes drawn.

Modifying the margins by setting mar in the par command, for example
to par(mar=c(3,3,2,1)) further optimises space usage when axes are drawn,
leaving (little) space for a title. It should be noted that the margin sizes are
absolute, expressed in units the height of a line of text, and so their effect on
map scale decreases when the plotting region is enlarged.

The plot methods provided by package sp do not allow the printing of axis
labels, such as ‘Easting’ and ‘Northing’, or ‘x-coordinate’ and ‘y-coordinate’.
The reason for this is technical, but mentioning axis names is usually obsolete
once the graph is referred to as a map. The units of the coordinate reference
system (such as metres) should be equal for both axes and do not need men-
tioning twice. Geographical coordinates are perhaps an exception, but this is
made explicit by axis tic labels such as 52◦N, or by adding a reference grid.

3.1 The Traditional Plot System 63

0 1 km

Fig. 3.5. Scale bar and north arrow as map elements

When we decide not to draw axes on a map, in addition to reference
boundaries, we can provide the reader of a map with a guidance for distance
and direction by plotting a scale bar and a north arrow, which can be placed
interactively using locator followed by a few well-chosen clicks in the map
(Fig. 3.5):

> plot(meuse)

> plot(meuse.sr, add = TRUE)

> plot(meuse)

> SpatialPolygonsRescale(layout.scale.bar(), offset = locator(1),

+ scale = 1000, fill = c("transparent", "black"), plot.grid = FALSE)

> text(locator(1), "0")

> text(locator(1), "1 km")

> SpatialPolygonsRescale(layout.north.arrow(), offset = locator(1),

+ scale = 400, plot.grid = FALSE)

When large numbers of maps for identical areas have to be produced with
identical layout elements, it pays off to write a function that draws all layout
elements. As an alternative, one may use conditioning plots; see the spplot

method in Sect. 3.2.

64 3 Visualising Spatial Data

3.1.3 Degrees in Axes Labels and Reference Grid

Unprojected data have coordinates in latitude and longitude degrees, with
negative degrees referring to degrees west (of the prime meridian) and south
(of the Equator). When unprojected spatial data are plotted using sp meth-
ods (plot or spplot), the axis label marks will give units in decimal degrees
N/S/E/W, for example 50.5◦N. An example is shown in Fig. 3.6.

When, for reference purposes, a grid needs to be added to a map, the
function gridlines can be used to generate an object of class SpatialLines.
By default it draws lines within the bounding box of the object at values
where the default axes labels are drawn; other values can be specified. Grid
lines may be latitude/longitude grids, and these are non-straight lines. This
is accomplished by generating a grid for unprojected data, projecting it, and
plotting it over the map shown. An example is given in Fig. 1.2. This is the
code used to define and draw projected latitude/longitude grid lines and grid
line labels for this figure, which uses the world map from package maps:

> library(maptools)

> library(maps)

> wrld <- map("world", interior = FALSE, xlim = c(-179,

+ 179), ylim = c(-89, 89), plot = FALSE)

> wrld_p <- pruneMap(wrld, xlim = c(-179, 179))

> llCRS <- CRS("+proj=longlat +ellps=WGS84")

> wrld_sp <- map2SpatialLines(wrld_p, proj4string = llCRS)

> prj_new <- CRS("+proj=moll")

> library(rgdal)

> wrld_proj <- spTransform(wrld_sp, prj_new)

> wrld_grd <- gridlines(wrld_sp, easts = c(-179, seq(-150,

+ 150, 50), 179.5), norths = seq(-75, 75, 15), ndiscr = 100)

> wrld_grd_proj <- spTransform(wrld_grd, prj_new)

> at_sp <- gridat(wrld_sp, easts = 0, norths = seq(-75,

+ 75, 15), offset = 0.3)

84°W

34
°N

76°W78°W80°W82°W

37
°N

36
°N

35
°N

Fig. 3.6. Decimal degrees in axis labels: the North Carolina SIDS data

3.1 The Traditional Plot System 65

> at_proj <- spTransform(at_sp, prj_new)

> plot(wrld_proj, col = "grey60")

> plot(wrld_grd_proj, add = TRUE, lty = 3, col = "grey70")

> text(coordinates(at_proj),pos = at_proj$pos, offset = at_proj$offset,

+ labels = parse(text = as.character(at_proj$labels)),

+ cex = 0.6)

Here, function gridat returns an object to draw the labels for these ‘gridded
curves’.

3.1.4 Plot Size, Plotting Area, Map Scale, and Multiple Plots

R distinguishes between figure region, which is the size of the total figure
including axes, title, etc., and plotting region, which is the area where the
actual data are plotted. To control the total size of the figure, we can get and
set the figure size in inches:
> par("pin")

> par(pin = c(4, 4))

If we want to enlarge the plotting window, we may have to close the current
plotting device and re-open it specifying size, for example
> dev.off()

> X11(width = 10, height = 10)

on Unix machines; replace X11 with windows on MS-Windows computers and
with quartz on Mac OS X. When graphic output is written to files, we can
use, for example
> postscript("file.ps", width = 10, height = 10)

The geographical (data) area that is shown on a plot is by default that of
the data, extended with a 4% margin on each side. Because the plot size is
fixed before plotting, only one of the axes will cover the entire plotting region,
the other will be centred and have larger margins. We can control the data
area plotted by passing xlim and ylim in a plot command, but by default they
will still be extended with 4% on each side. To prevent this extension, we can
set par(xaxs="i") and par(yaxs="i"). In the following example
> pin <- par("pin")

> dxy <- apply(bbox(meuse), 1, diff)

> ratio <- dxy[1]/dxy[2]

> par(pin = c(ratio * pin[2], pin[2]), xaxs = "i", yaxs = "i")

> plot(meuse, pch = 1)

> box()

we first set the aspect of the plotting region equal to that of the data points,
and then we plot the points without allowing for the 4% extension of the
range in all directions. The result (Fig. 3.7) is that in all four sides one plotting
symbol is clipped by the plot border.

If we want to create more than one map in a single figure, as was done in
Fig. 3.1, we can sub-divide the figure region into a number of sub-regions. We
can split the figure into two rows and three columns either by

66 3 Visualising Spatial Data

Fig. 3.7. Plotting region exactly equal to sample location ranges: border point
symbols are clipped

> par(mfrow = c(2, 3))

or

> layout(matrix(1:6, 2, 3, byrow = TRUE))

Each time a plot command that would normally create a new plot is called
(i.e. without add = TRUE), a plot is drawn in a new sub-area; this is done row-
wise for this example, or column-wise when byrow = FALSE. Function layout

also allows us to vary the height and width of the sub-areas.
Map scale is the ratio between the length of one unit on the map and one

unit in the real world. It can only be controlled ahead of time when both
the size of the plotting region, which is by default only a part of the figure
size unless all margins are set to zero, and the plotting area are defined, or
otherwise exactly known.

3.1.5 Plotting Attributes and Map Legends

Up to now we have only plotted the geometry or topology of the spatial
objects. If in addition we want to show feature characteristics or attributes
of the objects, we need to use type, size, or colour of the symbols, lines, or
polygons. Grid cells are usually plotted as small adjacent squares, so their
plotting is in some sense a special case of plotting polygons. Table 3.2 lists the

3.1 The Traditional Plot System 67

Table 3.2. Useful annotation arguments to be passed to plot or image methods

Class(es) Argument Meaning Further help

SpatialLinesDataFrame col Colour ?lines

lwd Line width ?lines

lty Line type ?lines

SpatialPolygonsDataFrame border Border colour ?polygon

density Hashing density ?polygon

angle Hashing angle ?polygon

lty Line type ?polygon

pbg Hole colour

SpatialPointsDataFrame pch Symbol ?points

col Colour ?points

bg Fill colour ?points

cex Symbol size ?points

SpatialPixelsDataFramea zlim Attribute value limits ?image.default

and col Colours ?image.default

SpatialGridDataFrame breaks Break points ?image.default

aUse image to plot gridded data

graphic arguments that can be passed to the plot methods for the Spatial

classes with attributes. When a specific colour, size, or symbol type refers
to a specific numeric value or category label of an attribute, a map legend is
needed to communicate this information. Example code for function legend is
given below and shown in Fig. 3.8.

We provide image methods for objects of class SpatialPixelsDataFrame and
SpatialGridDataFrame. As an example, we can plot interpolated (see Chap. 8)
zinc concentration (zinc.idw) as a background image along with the data:

> grays = gray.colors(4, 0.55, 0.95)

> image(zn.idw, col = grays, breaks = log(c(100, 200, 400,

+ 800, 1800)))

> plot(meuse.sr, add = TRUE)

> plot(meuse, pch = 1, cex = sqrt(meuse$zinc)/20, add = TRUE)

> legVals <- c(100, 200, 500, 1000, 2000)

> legend("left", legend = legVals, pch = 1, pt.cex = sqrt(legVals)/20,

+ bty = "n", title = "measured")

> legend("topleft", legend = c("100-200", "200-400", "400-800",

+ "800-1800"), fill = grays, bty = "n", title = "interpolated")

the result of which is shown in Fig. 3.8. This example shows how the legend

command is used to place two legends, one for symbols and one for colours. In
this example, rather light grey tones are used in order not to mask the black
symbols drawn.

68 3 Visualising Spatial Data

measured, ppm
100
200
500
1000
2000

interpolated, ppm
100−200
200−400
400−800
800−1800

measured and interpolated zinc

Fig. 3.8. Sample data points for zinc (ppm) plotted over an interpolated image,
with symbol area proportional to measured concentration

3.2 Trellis/Lattice Plots with spplot

Apart from the traditional plot methods provided by package sp, a sec-
ond method, called spplot, provides plotting of spatial data with attributes
through the Trellis graphics system (Cleveland, 1993, 1994), which is for R
provided (and extended) by package lattice (Sarkar, 2008). Trellis plots are
a bit harder to deal with initially because plot annotation, the addition of
information like legend, lines, text, etc., is handled differently and needs to
be thought out first. The advantage they offer is that many maps can be
composed into single (sets of) graphs, easily and efficiently.

3.2.1 A Straight Trellis Example

Consider the plotting of two interpolation scenarios for the zinc variable in the
meuse data set, obtained on the direct scale and on the log scale. We can do

3.2 Trellis/Lattice Plots with spplot 69

this either by the levelplot function from package lattice, or by using spplot,
which is for grids a simple wrapper around levelplot:

> library(lattice)

> levelplot(z ~ x + y | name, spmap.to.lev(zn[c("direct",

+ "log")]), asp = "iso")

> spplot(zn[c("direct", "log")])

The results are shown in Fig. 3.9. Function levelplot needs a data.frame

as second argument with the grid values for both maps in a single column (z)
and a factor (name) to distinguish between them. Helper function spmap.to.lev

converts the SpatialPixelsDataFrame object to this format by replicating the

x

y

330000

331000

332000

333000

179000

direct

181000

log

200
400
600
800
1000
1200
1400
1600
1800

direct log

200

400

600

800

1000

1200

1400

1600

1800

179000

181000

Fig. 3.9. Two interpolation scenarios for the meuse data set, plotted on the same
total size. (Top) Example of levelplot, (bottom) example of the spplot wrapper,
which turns off axes

70 3 Visualising Spatial Data

coordinates, stacking the attribute variables, and adding a factor to distinguish
the two maps. Function spplot plots each attribute passed in a single panel,
which results in this case in two panels.

The spplot method does all this too, but hides many details. It provides a
simple access to the functions provided by package lattice for plotting objects
deriving from class Spatial, while retaining the flexibility offered by lattice.
It also allows for adding geographic reference elements to maps.

Note that the plot shows four dimensions: the geographic space spanning
x- and y-coordinates, the attribute values displayed in colour or grey tone, and
the panel identifier, here the interpolation scenario but which may be used to
denote, for example attribute variable or time.

3.2.2 Plotting Points, Lines, Polygons, and Grids

Function spplot plots spatial objects using colour (or grey tone) to denote
attribute values. The first argument therefore has to be a spatial object with
attributes.

Figure 3.10 shows a typical plot with four variables. If the goal is to com-
pare the absolute levels in ppm across the four heavy metal variables, it makes

ppm

cadmium copper

lead zinc

[0,20]
(20,50]
(50,200]
(200,500]
(500,2000]

standardised

lead.st zinc.st

cadmium.st copper.st

[−1.2,0]
(0,1]
(1,2]
(2,3]
(3,5]

Fig. 3.10. Soil measurements for four heavy metals in the Meuse data set; (left) in
ppm units, (right) each variable scaled to mean zero and unit standard variance

3.2 Trellis/Lattice Plots with spplot 71

sense to plot them in a single figure with one legend. For such cases, the con-
ditioning plots of spplot are ideal. Other cases in which multiple sub-maps
are useful are, for example when different moments of time or different mod-
elling scenarios are used to define the factor that splits the data over sub-plots
(panels).

The first argument to spplot is a Spatial*DataFrame object with points,
lines, polygons, or a grid. The second argument tells which attributes (column
names or numbers) should be used; if omitted, all attributes are plotted.
Further attributes control the plotting: colours, symbols, legend classes, size,
axes, and geographical reference items to be added.

An example of a SpatialLinesDataFrame plot is shown in Fig. 3.11 (left).
The R function contourLines is used to calculate the contourlines:
> library(maptools)

> data(meuse.grid)

> coordinates(meuse.grid) <- c("x", "y")

> meuse.grid <- as(meuse.grid, "SpatialPixelsDataFrame")

> im <- as.image.SpatialGridDataFrame(meuse.grid["dist"])

> cl <- ContourLines2SLDF(contourLines(im))

> spplot(cl)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

annual

2−5 yrs

> 5 yrs

Fig. 3.11. (Top left) Contour lines for distance to river Meuse, levels represented
by grey tones; (top right) grid plot of a numerical variable; (bottom left) plot of the
factor variable flood frequency; note the different legend key

72 3 Visualising Spatial Data

3.2.3 Adding Reference and Layout Elements to Plots

Method spplot takes a single argument, sp.layout, to annotate plots with
lines, points, grids, polygons, text, or combinations of these. This argument
contains either a single layout item or a list of layout items. A single layout
item is a list object. Its first component is the name of the layout function to
be called, followed by the object to be plotted and then optional arguments
to adjust colour, symbol, size, etc. The layout functions provided are the
following:

sp layout function Object class Useful argumentsa

sp.points SpatialPoints pch, cex, col
sp.polygons SpatialPolygons lty, lwd, col
sp.lines SpatialLines lty, lwd, col
sp.text text (see panel.text)
aFor help, see ?par

An example of building an sp.layout structure is as follows:

> river <- list("sp.polygons", meuse.sr)

> north <- list("SpatialPolygonsRescale", layout.north.arrow(),

+ offset = c(178750, 332500), scale = 400)

> scale <- list("SpatialPolygonsRescale", layout.scale.bar(),

+ offset = c(180200, 329800), scale = 1000, fill = c("transparent",

+ "black"))

> txt1 <- list("sp.text", c(180200, 329950), "0")

> txt2 <- list("sp.text", c(181200, 329950), "1 km")

> pts <- list("sp.points", meuse, pch = 3, col = "black")

> meuse.layout <- list(river, north, scale, txt1, txt2,

+ pts)

> spplot(zn["log"], sp.layout = meuse.layout)

the result of which is shown in Fig. 3.12. Although the construction of this
is more elaborate than annotating base plots, as was done for Fig. 3.5, this
method seems better for the larger number of graphs as shown in Fig. 3.10.

A special layout element is which (integer), to control to which panel a
layout item should be added. If which is present in the top-level list it applies
to all layout items; in sub-lists with layout items it denotes the panel or set
of panels in which the layout item should be drawn. Without which, layout
items are drawn in each panel.

The order of items in the sp.layout argument matters; in principle objects
are drawn in the order they appear. By default, when the object of spplot

has points or lines, sp.layout items are drawn before the points to allow
grids and polygons drawn as a background. For grids and polygons, sp.layout
items are drawn afterwards (so the item will not be overdrawn by the grid
and/or polygon). For grids, adding a list element first = TRUE ensures that
the item is drawn before the grid is drawn (e.g. when filled polygons are

3.2 Trellis/Lattice Plots with spplot 73

0 1 km
200

400

600

800

1000

1200

1400

1600

1800

Fig. 3.12. Interpolated spplot image with layout elements

added). Transparency may help when combining layers; it is available for the
PDF device and several other devices.

Function sp.theme returns a lattice theme that can be useful for plots
made by spplot; use trellis.par.set(sp.theme()) after a device is opened
or changed to make this effective. Currently, this only sets the colours to
bpy.colors.

3.2.4 Arranging Panel Layout

The default layout of spplot plots is computed by (i) the dimensions of the
graphics device and the size of each panel and (ii) a row-wise ordering, starting
top-left. The row-wise ordering can be started bottom-left if as.table = FALSE

is passed to the spplot call. Note that FALSE is the default value for functions
in lattice.

Besides as.table, panel layout can be modified with the layout and skip

arguments. Argument layout is a numeric vector with the number of columns
and the number of rows, for example layout = c(3,4) will result in three
columns and four rows. Argument skip can be used to leave certain panels

74 3 Visualising Spatial Data

blank, in plotting order: layout = c(3,3), skip = c(F,T,T,F,F,T,F,F,F) will
plot six panels in a lower triangular 3 × 3 panel matrix. Figure 8.10 gives an
example of this. More information about layout, skip, and as.table can be
found in the help for lattice function xyplot.

3.3 Interacting with Plots

The interaction R allows with plots in the traditional and lattice plot systems
is rather limited, compared with stand-alone software written for interacting
with data, or GIS. The main functionality is centred around which information
is present at the location where a mouse is clicked.

3.3.1 Interacting with Base Graphics

Base graphics has two functions to interact with interactive (i.e. screen)
graphic devices:

locator returns the locations of points clicked, in coordinates of the x- and
y-axis

identify plots and returns the labels (by default: row number) of the items
nearest to the location clicked, within a specified maximum distance (0.25
inch in plot units, by default).

Both functions wait for user input; left mouse clicks are registered; a right
mouse click ends the input. An example session for identify may look like
this:

> plot(meuse)

> meuse.id <- identify(coordinates(meuse))

and the result may look like the left side of Fig. 3.13. An example digitise
session, followed by selection and re-plotting of points within the area digitised
may be as follows:

> plot(meuse)

> region <- locator(type = "o")

> n <- length(region$x)

> p <- Polygon(cbind(region$x, region$y)[c(1:n, 1),],

+ hole = FALSE)

> ps <- Polygons(list(p), ID = "region")

> sps <- SpatialPolygons(list(ps))

> plot(meuse[!is.na(overlay(meuse, sps)),], pch = 16,

+ cex = 0.5, add = TRUE)

with results in the right-hand side of Fig. 3.13. Note that we ‘manually’ close
the polygon by adding the first point to the set of points digitised.

To identify particular polygons, we can use locator and overlay the points
with the polygon layer shown in Fig. 3.6:

3.3 Interacting with Plots 75

82

106

109

118
155

identify locator

Fig. 3.13. Interaction with point plots. (Left) Individual identification of points;
(right) digitising a region, highlighted points included in the region

> library(maptools)

> prj <- CRS("+proj=longlat +datum=NAD27")

> nc_shp <- system.file("shapes/sids.shp", package = "maptools")[1]

> nc <- readShapePoly(nc_shp, proj4string = prj)

> plot(nc)

> pt <- locator(type = "p")

> print(pt)

$x

[1] -78.69484

$y

[1] 35.8044

> overlay(nc, SpatialPoints(cbind(ptx, pty), proj4string = prj))

AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74

36 0.219 2.13 1938 1938 Wake 37183 37183 92 14484

SID74 NWBIR74 BIR79 SID79 NWBIR79

36 16 4397 20857 31 6221

76 3 Visualising Spatial Data

3.3.2 Interacting with spplot and Lattice Plots

In R, Trellis (lattice) plots have the same interaction functionality as base
plots. However, the process is a bit more elaborate because multiple panels
may be present. To select points with spplot, use

> ids <- spplot(meuse, "zinc", identify = TRUE)

This will show the points selected and return the selected points’ row numbers.
In essence, and what the above function hides, we first select a panel, then

identify within this panel, and finally unselect it, which is accomplished by
the lattice functions

> library(lattice)

> trellis.focus("panel", column = 1, row = 1)

> ids <- panel.identify()

> trellis.unfocus()

Digitising can be done by the function grid.locator from package grid,
which underlies the functionality in lattice. A single point is selected by

> library(grid)

> trellis.focus("panel", column = 1, row = 1)

> as.numeric(grid.locator())

> trellis.unfocus()

Package sp contains a simple function spplot.locator to return a digitised
area, simulating the base plot locator behaviour. It returns a two-column
matrix with spatial coordinates.

3.4 Colour Palettes and Class Intervals

3.4.1 Colour Palettes

Rprovides a number of colour palettes, and the functions providing themare self-
descriptive: rainbow, grey.colors, heat.colors, terrain.colors, topo.colors,
and cm.colors (cm for cyan-magenta) – cm.colors are the default palette in
spplot and diverge from white. For quantitative data, shades in a single
colour are usually preferred. These can be created by colorRampPalette, which
creates a color interpolating function taking the required number of shades as
argument, as in

> rw.colors <- colorRampPalette(c("red", "white"))

> image(meuse.grid["dist"], col = rw.colors(10))

Package RColorBrewer provides the palettes described (and printed) in
Brewer et al. (2003) for continuous, diverging, and categorical variables. An
interface for exploring how these palettes look on maps is found in the color-
brewer applet.2

2 See http://www.colorbrewer.org/.

3.4 Colour Palettes and Class Intervals 77

It also has information on suitability of each of the palettes for colour-
blind people, black-and-white photo-copying, projecting by LCD projectors,
use on LCD or CRT screens, and for colour printing. Another, non-interactive,
overview is obtained by

> library(RColorBrewer)

> example(brewer.pal)

Package sp provides the ramp bpy.colors (blue-pink-yellow), which has the
advantage that it has many colors and that it prints well both on color and
black-and-white printers.

3.4.2 Class Intervals

Although we can mimic continuous variation by choosing many (e.g. 100 or
more) colours, matching map colours to individual colours in the legend is
approximate. If we want to communicate changes connected to certain fixed
levels, for example levels related to regulation, or if we for other reasons want
differentiable or identifiable class intervals, we should limit the number of
classes to, for example six or less.

Class intervals can be chosen in many ways, and some have been collected
for convenience in the classInt package. The first problem is to assign class
boundaries to values in a single dimension, for which many classification tech-
niques may be used, including pretty, quantile, and natural breaks among
others, or even simple fixed values. From there, the intervals can be used
to generate colours from a colour palette as discussed earlier. Because there
are potentially many alternative class memberships even for a given number
of classes (by default from nclass.Sturges), choosing a communicative set
matters.

We try just two styles, quantiles and Fisher-Jenks natural breaks for five
classes (Slocum et al., 2005, pp. 85–86), among the many available – for further
documentation see the help page of the classIntervals function. They yield
quite different impressions, as we see:

> library(RColorBrewer)

> library(classInt)

> pal <- grey.colors(4, 0.95, 0.55, 2.2)

> q5 <- classIntervals(meuse$zinc, n = 5, style = "quantile")

> q5

style: quantile

one of 14,891,626 possible partitions of this variable into 5 classes

under 186.8 186.8 - 246.4 246.4 - 439.6 439.6 - 737.2 over 737.2

31 31 31 31 31

> diff(q5$brks)

[1] 73.8 59.6 193.2 297.6 1101.8

> plot(q5, pal = pal)

78 3 Visualising Spatial Data

0 500 1500 0 500 1500

0.
0

Quantile Fisher−Jenks

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

1.
0

0.
8

0.
6

0.
4

0.
2

Fig. 3.14. Comparison of quantile and natural breaks methods for setting class
intervals, Meuse bank zinc ppm

The empirical cumulative distribution function, used in the plot method for
the classIntervals object returned, suggests that using quantiles is not nec-
essarily a good idea. While of course the number of sites in each class is equal
by definition, the observed values are far from uniformly distributed. Examin-
ing the widths of the classes using diff on the class breaks shows that many
sites with moderate zinc values will be assigned to the darkest colour class.
Figure 3.14 shows the plot of this class interval set compared with that for
a five-class Fisher-Jenks classification. There are two implementations of this
style, one named ‘fisher’, the other ‘jenks’. This ‘natural breaks’ set of class
intervals is based on minimising the within-class variance, like many of the
other styles available.

> fj5 <- classIntervals(meuse$zinc, n = 5, style = "fisher")

> fj5

style: fisher

one of 14,891,626 possible partitions of this variable into 5 classes

under 307.5 307.5 - 573.0 573.0 - 869.5 869.5 - 1286.5

75 32 29 12

over 1286.5

7

> diff(fj5$brks)

[1] 194.5 265.5 296.5 417.0 552.5

> plot(fj5, pal = pal)

Once we are satisfied with the chosen class intervals and palette, we can
go on to plot the data, using the findColours function to build a vector of
colours and attributes, which can be used in constructing a legend:

3.4 Colour Palettes and Class Intervals 79

Quantile

under 186.8
186.8 − 246.4
246.4 − 439.6
439.6 − 737.2
over 737.2

Fisher−Jenks

under 307.5
307.5 − 573.0
573.0 − 869.5
869.5 − 1286.5
over 1286.5

Fig. 3.15. Comparison of output maps made with quantile and natural breaks class
intervals, Meuse bank zinc ppm

> q5Colours <- findColours(q5, pal)

> plot(meuse, col = q5Colours, pch = 19)

> legend("topleft", fill = attr(q5Colours, "palette"),

+ legend = names(attr(q5Colours, "table")), bty = "n")

The output for these two classifications is shown in Fig. 3.15, and does show
that choice of representation matters. Using quantile-based class intervals, it
appears that almost all the river bank sites are equally polluted, while the
natural breaks intervals discriminate better.

For image, we can specify the breaks argument, as was done in Fig. 3.8.
While the classIntervals function can be used with raster data, it may be
prudent to search for class intervals using a sample of the input data, in-
cluding the extremities to save time; this heuristic is used by many GIS. The
default class interval style used by image is to divide the range into a number
of classes of equal width (equivalent to the equal or pretty styles in classIn-

tervals). With very skewed data, for example 2D density plots, this may give
the impression of the data having disappeared, because almost all the cells
will be in one extreme class, and only a few in other classes. Changing the
class intervals will ‘magically’ reveal the data.

80 3 Visualising Spatial Data

For the spplot methods for lines, polygons, and grids, we can pass the ar-
gument pretty = TRUE, which ensures that colour breaks coincide with legend
values (see right-hand side of Fig. 3.11). To specify class intervals with spplot,
for points data we can pass the cuts argument, and for lines, polygons, or
grids we can pass the at argument. To also control the key tic marks and
labels, we need to specify colorkey as well. For example, the middle plot of
Fig. 3.11 was created by:

> cuts = (0:10)/10

> spplot(meuse.grid, "dist", colorkey = list(labels = list(at = cuts)),

+ at = cuts)

Having provided a framework for handling and visualising spatial data in
R, we now move to demonstrate how user data may be imported into R, and
the results of analysis exported.

4

Spatial Data Import and Export

Geographical information systems (GIS) and the types of spatial data they
handle were introduced in Chap. 1. We now show how spatial data can be
moved between sp objects in R and external formats, including the ones typ-
ically used by GIS. In this chapter, we first show how coordinate reference
systems can be handled portably for import and export, going on to transfer
vector and raster data, and finally consider ways of linking R and GIS more
closely.

Before we begin, it is worth noting the importance of open source projects
in making it possible to offer spatial data import and export functions in
R. Many of these projects are now gathered in the Open Source Geospatial
Foundation.1 There are some projects which form the basis for the others,
in particular the Geospatial Data Abstraction Library2 (GDAL, pronounced
G�oodal, coordinated by Frank Warmerdam). Many of the projects also use the
PROJ.4 Cartographic Projections library,3 originally written by Gerald Even-
den then of the United States Geological Survey, and modified and maintained
by Frank Warmerdam. Without access to such libraries and their communities,
it would not be possible to provide import or export facilities for spatial data
in R. Many of the open source toolkits are also introduced in depth in Mitchell
(2005). As we proceed, further links to relevant sources of information, such
as mailing list archives, will be given.

In this chapter, we consider the representation of coordinate reference sys-
tems in a robust and portable way. Next, we show how spatial data may be
read into R, and be written from R, using the most popular formats. The
interface with GRASS GIS will be covered in detail, and finally the export of
data for visualisation will be described.

First, we show how loading the package providing most of the interfaces
to the software of these open source projects, rgdal, reports their status:

1 http://www.osgeo.org/.
2 http://www.gdal.org/.
3 http://proj.maptools.org/.

82 4 Spatial Data Import and Export

> library(rgdal)

Geospatial Data Abstraction Library extensions to R successfully loaded

Loaded GDAL runtime: GDAL 1.5.1, released 2008/03/14

GDAL_DATA: /home/rsb/lib/R/rgdal/gdal

Loaded PROJ.4 runtime: Rel. 4.6.0, 21 Dec 2007

PROJ_LIB: /home/rsb/lib/R/rgdal/proj

We see that the release version numbers and dates of the external dynamically
loaded libraries are reported. In addition, the values of the system environment
variables GDAL_DATA and PROJ_LIB are set internally to support files bundled
with rgdal, and are reset to their initial values when the package exits.4

4.1 Coordinate Reference Systems

Spatial data vary a great deal both in the ways in which their position at-
tributes are recorded and in the adequacy of documentation of how posi-
tion has been determined. This applies both to data acquired from secondary
sources and to Global Positioning System input, or data capture from ana-
logue maps by digitising. This also constitutes a specific difference from the
analysis say of medical imagery, which in general requires only a local coor-
dinate system; astronomy and the mapping of other planets also constitute a
separate but linked field. Knowledge about the coordinate reference system
is needed to establish the positional coordinates’ units of measurement, obvi-
ously needed for calculating distances between observations and for describing
the network topology of their relative positions. This knowledge is essential
for integrating spatial data for the same study area, but coming from differ-
ent sources. Waller and Gotway (2004, pp. 40–47) describe some of the key
concepts and features to be dealt with here in an accessible fashion.

Coordinate reference systems (CRS) are at the heart of geodetics and car-
tography: how to represent a bumpy ellipsoid on the plane. We can speak
of geographical CRS expressed in degrees and associated with an ellipse –
a model of the shape of the earth, a prime meridian defining the origin in
longitude, and a datum. The concept of a datum is arbitrary and anchors a
specific geographical CRS to an origin point in three dimensions, including an
assumed height above the assumed centre of the earth or above a standard
measure of sea level. Since most of these quantities have only been subject to
accurate measurement since the use of satellites for surveying became com-
mon, changes in ellipse and datum characteristics between legacy maps and
newly collected data are common.

In contrast, projected CRS are expressed by a specific geometric model
projecting to the plane and measures of length, as well as the underlying

4 The report returned when loading rgdal may be suppressed by wrapping the call
in suppressPackageStartupMessages.

4.1 Coordinate Reference Systems 83

ellipse, prime meridian, and datum. Most countries have multiple CRS, often
for very good reasons. Surveyors in cities have needed to establish a local
datum and a local triangulation network, and frequently these archaic systems
continue to be used, forming the basis for property boundaries and other legal
documents.

Cartography and surveying has seen the development of national triangu-
lations and of stipulated national projections, or sub-national or zoned pro-
jections for larger countries. Typically, problems arise where these regimes
meet. The choices of ellipse, prime meridian, and datum may differ, and the
chosen projection and metric may also differ, or have different key parameters
or origin offsets. On land, national borders tend to be described adequately
with reference to the topography, but at sea, things change. It was because
the coastal states around the North Sea basin had incompatible and not fully
defined CRS that the European Petroleum Survey Group (EPSG; now Oil
& Gas Producers (OGP) Surveying & Positioning Committee) began collect-
ing a geodetic parameter data set5 starting in 1986, based on earlier work in
member companies.

4.1.1 Using the EPSG List

The EPSG list is under continuous development, with corrections being made
to existing entries, and new entries being added as required. A copy of the list
is provided in the rgdal package,6 because it permits the conversion of a large
number of CRS into the PROJ.4 style description used here. Since it allows
for datum transformation as well as projection, the number of different coor-
dinate reference systems is larger than that in the mapproj package. Datum
transformation is based on transformation to the World Geodetic System of
1984 (WGS84), or inverse transformation from it to an alternative specified
datum. WGS84 was introduced after measurements of earth from space had
become very accurate, and forms a framework into which local and national
systems may be fitted.

The rgdal package copy of the EPSG list can be read into a data frame
and searched using grep, for example. We try to reproduce the example given
by the Royal Netherlands Navy entitled ‘From ED50 towards WGS84, or does
your GPS receiver tell you the truth?’7 A position has been read from a chart
in the ED50 datum about a nautical mile west of the jetties of IJmuiden, but
needs to be converted to the WGS84 datum for comparison with readings
from a GPS satellite navigation instrument. We need to transform the chart
coordinates in ED50 – ED50 is the European Datum 1950 – to coordinates
in the WGS84 datum (the concept of a datum is described on p. 82). In this
case to save space, the search string has been chosen to match exactly the row
needed; entering just ED50 gives 35 hits:
5 http://www.epsg.org/.
6 See installation note at chapter end, p. 111.
7 http://www.hydro.nl/articles/artikel2_en.htm.

84 4 Spatial Data Import and Export

> EPSG <- make_EPSG()

> EPSG[grep("^# ED50$", EPSG$note),]

code note prj4

149 4230 # ED50 +proj=longlat +ellps=intl +no_defs

The EPSG code is in the first column of the data frame and the PROJ.4
specification in the third column, with the known set of tags and values.

4.1.2 PROJ.4 CRS Specification

The PROJ.4 library uses a ‘tag=value’ representation of coordinate reference
systems, with the tag and value pairs enclosed in a single character string. This
is parsed into the required parameters within the library itself. The only values
used autonomously in CRS class objects are whether the string is a character
NA (missing) value for an unknown CRS, and whether it contains the string
longlat, in which case the CRS contains geographical coordinates.8 There are
a number of different tags, always beginning with +, and separated from the
value with =, using white space to divide the tag/value pairs from each other.9

If we use the special tag +init with value epsg:4230, where 4230 is the EPSG
code found above, the coordinate reference system will be populated from the
tables supplied with the libraries (PROJ.4 and GDAL) and included in rgdal.

> CRS("+init=epsg:4230")

CRS arguments:

+init=epsg:4230 +proj=longlat +ellps=intl +no_defs

The two tags that are known are +proj – projection, which takes the value
longlat for geographical coordinates – and +ellps – ellipsoid, with value
intl for the International Ellipsoid of 1909 (Hayford). There is, however, no
+towgs84 tag, and so without further investigation it will not be possible to
make the datum transformation. Lots of information about CRS in general can
be found in Grids & Datums,10 a regular column in Photogrammetric Engi-
neering & Remote Sensing. The February 2003 number covers the Netherlands
and gives a three-parameter transformation – in some cases seven parameters
are given to specify the shift between datums.11 Adding these values gives a
full specification:

8 The value latlong is not used, although valid, because coordinates in sp class
objects are ordered with eastings first followed by northings.

9 In addition to the EPSG list, there are many examples at the PROJ.4 website,
for example: http://geotiff.maptools.org/proj_list/.

10 http://www.asprs.org/resources/GRIDS/.
11 Searching the PROJ.4 mailing list can also provide useful hints: http://news.

gmane.org/gmane.comp.gis.proj-4.devel.

4.1 Coordinate Reference Systems 85

> ED50 <- CRS("+init=epsg:4230 +towgs84=-87,-96,-120,0,0,0,0")

> ED50

CRS arguments:

+init=epsg:4230 +towgs84=-87,-96,-120,0,0,0,0 +proj=longlat

+ellps=intl +no_defs

Datum transformation shifts coordinates between differently specified ellip-
soids in all three dimensions, even if the data appear to be only 2D, because
2D data are assumed to be on the surface of the ellipsoid. It may seem un-
reasonable that the user is confronted with the complexities of coordinate
reference system specification in this way. The EPSG list provides a good
deal of help, but assumes that wrong help is worse than no help, and does
not give transformation parameters where there is any ambiguity, and for the
ED50 datum, parameter values do vary across Europe. Modern specifications
are designed to avoid ambiguity, and so this issue will become less troublesome
with time, although old maps are going to be a source of data for centuries to
come.

4.1.3 Projection and Transformation

In the Dutch navy case, we do not need to project because the input and
output coordinates are geographical:

> IJ.east <- as(char2dms("4d31'00\"E"), "numeric")

> IJ.north <- as(char2dms("52d28'00\"N"), "numeric")

> IJ.ED50 <- SpatialPoints(cbind(x = IJ.east, y = IJ.north),

+ ED50)

> res <- spTransform(IJ.ED50, CRS("+proj=longlat +datum=WGS84"))

> x <- as(dd2dms(coordinates(res)[1]), "character")

> y <- as(dd2dms(coordinates(res)[2], TRUE), "character")

> cat(x, y, "\n")

4d30'55.294"E 52d27'57.195"N

> spDistsN1(coordinates(IJ.ED50), coordinates(res), longlat = TRUE) *

+ 1000

[1] 124.0994

> library(maptools)

> gzAzimuth(coordinates(IJ.ED50), coordinates(res))

[1] -134.3674

Using correctly specified coordinate reference systems, we can reproduce the
example successfully, with a 124 m shift between a point plotted in the inap-
propriate WGS84 datum and the correct ED50 datum for the chart:

86 4 Spatial Data Import and Export

‘For example: one who has read his position 52d28′00′′N/ 4d31′00′′E
(ED50) from an ED50-chart, right in front of the jetties of IJmuiden,
has to adjust this co-ordinate about 125 m to the Southwest The
corresponding co-ordinate in WGS84 is 52d27′57′′N/ 4d30′55′′E.’

The work is done by the spTransform method, taking any Spatial* object,
and returning an object with coordinates transformed to the target CRS. There
is no way of warping regular grid objects, because for arbitrary transforma-
tions, the new positions will not form a regular grid. The solution in this case
is to convert the object to point locations, transform them to the new CRS,
and interpolate to a suitably specified grid in the new CRS.

Two helper functions are also used here to calculate the difference between
the points in ED50 and WGS84: spDistsN1 and gzAzimuth. Function spDistsN1

measures distances between a matrix of points and a single point, and uses
Great Circle distances on the WGS84 ellipsoid if the longlat argument is TRUE.
It returns values in kilometres, and so we multiply by 1,000 here to obtain
metres. gzAzimuth gives azimuths calculated on the sphere between a matrix
of points and a single point, which must be geographical coordinates, with
north zero, and negative azimuths west of north.

So far in this section we have used an example with geographical coor-
dinates. There are many different projections to the plane, often chosen to
give an acceptable representation of the area being displayed. There exist no
all-purpose projections, all involve distortion when far from the centre of the
specified frame, and often the choice of projection is made by a public mapping
agency.

> EPSG[grep("Atlas", EPSG$note), 1:2]

code note

578 2163 # US National Atlas Equal Area

> CRS("+init=epsg:2163")

+init=epsg:2163 +proj=laea +lat_0=45 +lon_0=-100 +x_0=0 +y_0=0

+a=6370997 +b=6370997 +units=m +no_defs

For example, the US National Atlas has chosen a particular CRS for its view
of the continental US, with a particular set of tags and values to suit. The
projection chosen has the value laea, which, like many other values used to
represent CRS in PROJ.4 and elsewhere, is rather cryptic. Provision is made
to access descriptions within the PROJ.4 library to make it easier to interpret
the values in the CRS. The projInfo function can return several kinds of
information in tabular form, and those tables can be examined to shed a little
more light on the tag values.

> proj <- projInfo("proj")

> proj[proj$name == "laea",]

name description

47 laea Lambert Azimuthal Equal Area

4.1 Coordinate Reference Systems 87

> ellps <- projInfo("ellps")

> ellps[grep("a=6370997", ellps$major),]

name major ell description

42 sphere a=6370997.0 b=6370997.0 Normal Sphere (r=6370997)

It turns out that this CRS is in the Lambert Azimuthal Equal Area projection,
using the sphere rather than a more complex ellipsoid, with its centre at 100◦

west and 45◦ north. This choice is well-suited to the needs of the Atlas, a
compromise between coverage, visual communication, and positional accuracy.

All this detail may seem unnecessary, until the analysis we need to com-
plete turns out to depend on data in different coordinate reference systems.
At that point, spending time establishing as clearly as possible the CRS for
our data will turn out to have been a wise investment. The same consider-
ation applies to importing and exporting data – if their CRS specifications
are known, transferring positional data correctly becomes much easier. For-
tunately, for any study region the number of different CRS used in archived
maps is not large, growing only when the study region takes in several juris-
dictions. Even better, all modern data sources are much more standardised
(most use the WGS84 datum), and certainly much better at documenting
their CRS specifications.

4.1.4 Degrees, Minutes, and Seconds

In common use, the sign of the coordinate values may be removed and the
value given a suffix of E or N for positive values of longitude or latitude and
W or S for negative values. In addition, values are often recorded traditionally
not as decimal degrees, but as degrees, minutes, and decimal seconds, or some
truncation of this. These representations raise exactly the same questions as
for time series, although time can be mapped onto the infinite real line, while
geographical coordinates are cyclical – move 360◦ and you return to your
point of departure. For practical purposes, geographical coordinates should
be converted to decimal degree form; this example uses the Netherlands point
that we have already met:

> IJ.dms.E <- "4d31'00\"E"
> IJ.dms.N <- "52d28'00\"N"

We convert these character strings to class ‘DMS’ objects, using function
char2dms:

> IJ_east <- char2dms(IJ.dms.E)

> IJ_north <- char2dms(IJ.dms.N)

> IJ_east

[1] 4d31'E

> IJ_north

88 4 Spatial Data Import and Export

[1] 52d28'N

> getSlots("DMS")

WS deg min sec NS

"logical" "numeric" "numeric" "numeric" "logical"

The DMS class has slots to store representations of geographical coordinates,
however, they might arise, but the char2dms() function expects the character
input format to be as placed, permitting the degree, minute, and second sym-
bols to be given as arguments. We get decimal degrees by coercing from class
‘DMS’ to class ‘numeric’ with the as() function:

> c(as(IJ_east, "numeric"), as(IJ_north, "numeric"))

[1] 4.516667 52.466667

4.2 Vector File Formats

Spatial vector data are points, lines, polygons, and fit the equivalent sp classes.
There are a number of commonly used file formats, most of them proprietary,
and some newer ones which are adequately documented. GIS are also more
and more handing off data storage to database management systems, and
some database systems now support spatial data formats. Vector formats can
also be converted outside R to formats for which import is feasible.

GIS vector data can be either topological or simple. Legacy GIS were
topological, desktop GIS were simple (sometimes known as spaghetti). The
sp vector classes are simple, meaning that for each polygon all coordinates
are stored without checking that boundaries have corresponding points. A
topological representation in principal stores each point only once, and builds
arcs (lines between nodes) from points, polygons from arcs – the GRASS 6
open source GIS has such a topological representation of vector features. Only
the RArcInfo package tries to keep some traces of topology in importing legacy
ESRI™ ArcInfo™ binary vector coverage data (or e00 format data) – maps uses
topology because that was how things were done when the underlying code
was written. The import of ArcGIS™ coverages is described fully in Gómez-
Rubio and López-Qúılez (2005); conversion of imported features into sp classes
is handled by the pal2SpatialPolygons function in maptools.

It is often attractive to make use of the spatial databases in the maps
package. They can be converted to sp class objects using functions such
as map2SpatialPolygons in the maptools package. An alternative source of
coastlines is the Rgshhs function in maptools, interfacing binary databases
of varying resolution distributed by the ‘Global Self-consistent, Hierarchical,
High-resolution Shoreline Database’ project.12

12 http://www.soest.hawaii.edu/wessel/gshhs/gshhs.html.

4.2 Vector File Formats 89

The best resolution databases are rather large, and so maptools ships only
with the coarse resolution one; users can install and use higher resolution
databases locally. Figures 2.3 and 2.7, among others in earlier chapters, have
been made using these sources.

A format that is commonly used for exchanging vector data is the shapefile.
This file format has been specified by ESRI™, the publisher of ArcView™ and
ArcGIS™, which introduced it initially to support desktop mapping using
ArcView™.13 This format uses at least three files to represent the data, a
file of geometries with an *.shp extension, an index file to the geometries
*.shx, and a legacy *.dbf DBF III file for storing attribute data. Note that
there is no standard mechanism for specifying missing attribute values in this
format. If a *.prj file is present, it will contain an ESRI™ well-known text CRS
specification. The shapefile format is not fully compatible with the OpenGIS®

Simple Features Specification (see p. 122 for a discussion of this specification).
Its incompatibility is, however, the same as that of the SpatialPolygons class,
using a collection of polygons, both islands and holes, to represent a single
observation in terms of attribute data.

4.2.1 Using OGR Drivers in rgdal

Using the OGR vector functions of the Geospatial Data Abstraction Library,
interfaced in rgdal,14 lets us read spatial vector data for which drivers are
available. A driver is a software component plugged-in on demand – here
the OGR library tries to read the data using all the formats that it knows,
using the appropriate driver if available. OGR also supports the handling of
coordinate reference systems directly, so that if the imported data have a
specification, it will be read.

The availability of OGR drivers differs from platform to platform, and can
be listed using the ogrDrivers function. The function also lists whether the
driver supports the creation of output files. Because the drivers often depend
on external software, the choices available will depend on the local computer
installation. It is frequently convenient to convert from one external file format
to another using utility programs such as ogr2ogr in binary FWTools releases,
which typically include a wide range of drivers.15

The readOGR function takes at least two arguments – they are the data
source name (dsn) and the layer (layer), and may take different forms for
different drivers. It is worth reading the relevant web pages16 for the format
being imported. For ESRI™ shapefiles, dsn is usually the name of the directory
containing the three (or more) files to be imported (given as "." if the working

13 The format is fully described in this white paper: http://shapelib.maptools.
org/dl/shapefile.pdf.

14 See installation note at chapter end.
15 http://fwtools.maptools.org.
16 http://ogr.maptools.org/ogr_formats.html.

90 4 Spatial Data Import and Export

directory), and layer is the name of the shapefile without the ".shp" extension.
Additional examples are given on the function help page for file formats, but
it is worth noting that the same function can also be used where the data
source name is a database connection, and the layer is a table, for example
using PostGIS in a PostgreSQL database.

We can use the classic Scottish lip cancer data set by district downloaded
from the additional materials page for Chap. 9 in Waller and Gotway (2004).17

There are three files making up the shapefile for Scottish district boundaries
at the time the data were collected – the original study and extra data in a
separate text file are taken from Clayton and Kaldor (1987). The shapefile
appears to be in geographical coordinates, but no *.prj file is present, so
after importing from the working directory, we assign a suitable coordinate
reference system.

> scot_LL <- readOGR(".", "scot")

OGR data source with driver: ESRI Shapefile

Source: ".", layer: "scot"

with 56 rows and 2 columns

> proj4string(scot_LL) <- CRS("+proj=longlat ellps=WGS84")

> scot_LL$ID

[1] 12 13 19 2 17 16 21 50 15 25 26 29 43 39 40 52 42 51 34 54 36 46

[23] 41 53 49 38 44 30 45 48 47 35 28 4 20 33 31 24 55 18 56 14 32 27

[45] 10 22 6 8 9 3 5 11 1 7 23 37

The Clayton and Kaldor data are for the same districts, but with the rows
ordered differently, so that before combining the data with the imported
polygons, they need to be matched first (matching methods are discussed
in Sect. 5.5.2):

> scot_dat <- read.table("scotland.dat", skip = 1)

> names(scot_dat) <- c("District", "Observed", "Expected",

+ "PcAFF", "Latitude", "Longitude")

> scot_dat$District

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

[23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

[45] 45 46 47 48 49 50 51 52 53 54 55 56

> library(maptools)

> scot_dat1 <- scot_dat[match(scot_LL$ID, scot_dat$District),

+]

> row.names(scot_dat1) <- sapply(slot(scot_LL, "polygons"),

+ function(x) slot(x, "ID"))

> scot_LLa <- spCbind(scot_LL, scot_dat1)

> all.equal(scot_LLa$ID, scot_LLa$District)

17 http://www.sph.emory.edu/~lwaller/WGindex.htm.

4.2 Vector File Formats 91

SMR smth

0

1

2

3

4

5

6

7

Fig. 4.1. Comparison of relative risk and EB smoothed relative risk for Scottish lip
cancer

[1] TRUE

> names(scot_LLa)

[1] "NAME" "ID" "District" "Observed" "Expected"

[6] "PcAFF" "Latitude" "Longitude"

Figure 4.1 compares the relative risk by district with the Empirical Bayes
smooth values – we return to the actual techniques involved in Chap. 11, here
the variables are being added to indicate how results may be exported from
R below. The relative risk does not take into account the possible uncertainty
associated with unusual incidence rates in counties with relatively small pop-
ulations at risk, while Empirical Bayes smoothing shrinks such values towards
the rate for all the counties taken together.

> library(spdep)

> O <- scot_LLa$Observed

> E <- scot_LLa$Expected

> scot_LLa$SMR <- probmap(O, E)$relRisk/100

> library(DCluster)

> scot_LLa$smth <- empbaysmooth(O, E)$smthrr

Finally, we project the district boundaries to the British National Grid as
described by Waller and Gotway (2004):

> scot_BNG <- spTransform(scot_LLa, CRS("+init=epsg:27700"))

92 4 Spatial Data Import and Export

We export these data in two forms, first as Keyhole Markup Language
(KML) overlays for Google Earth™. The underlying coordinate reference sys-
tem for Google Earth™ is geographical, in the WGS84 datum, so we can
export the district boundaries as we imported them, using the writeOGR func-
tion, choosing only a single variable. This function, like readOGR, uses drivers
to handle different data formats, with driver="KML" in this case. Next we take
the district centroids and export them as a SpatialPointsDataFrame, with the
district name, the observed and expected values, and the two rates:

> writeOGR(scot_LLa["ID"], dsn = "scot_district.kml",layer = "borders",

+ driver = "KML")

> llCRS <- CRS("+proj=longlat ellps=WGS84")

> scot_SP_LL <- SpatialPointsDataFrame(coordinates(scot_LLa),

+ proj4string = llCRS, data = as(scot_LLa, "data.frame")[c("NAME",

+ "Observed", "Expected", "SMR", "smth")])

> writeOGR(scot_SP_LL, dsn = "scot_rates.kml", layer = "rates",

+ driver = "KML")

The output format for Google Earth™ is fairly simple, and it will probably
become possible in time to make the export objects more intelligent, but just
being able to distribute spatial output permitting an online recipient simply
to display results by opening a file does offer considerable opportunities, as
Fig. 4.2 illustrates. We could also have written an image overlay, as we see
later in Sect. 4.3.2.

Fig. 4.2. Scottish district boundaries and centroid pointers shown in Google Earth™

4.3 Raster File Formats 93

We can of course export to a shapefile, using driver="ESRI Shapefile", or
to other file formats for which output drivers are implemented:

> drv <- "ESRI Shapefile"

> writeOGR(scot_BNG, dsn = ".", layer = "scot_BNG", driver = drv)

> list.files(pattern = "^scot_BNG")

[1] "scot_BNG.dbf" "scot_BNG.prj" "scot_BNG.shp" "scot_BNG.shx"

[5] "scot_BNG.txt"

The output now contains a *.prj file with the fully specified coordinate ref-
erence system for the British National Grid, to which we projected the data
object.

4.2.2 Other Import/Export Functions

If the rgdal package is not available, there are two other packages that can
be used for reading and writing shapefiles. The shapefiles package is written
without external libraries, using file connections. It can be very useful when
a shapefile is malformed, because it gives access to the raw numbers. The
maptools package contains a local copy of the library used in OGR for reading
shapefiles (the DBF reader is in the foreign package), and provides a low-
level import read.shape function, a helper function getinfo.shape to identify
whether the shapefile contains points, lines, or polygons.

> getinfo.shape("scot_BNG.shp")

Shapefile type: Polygon, (5), # of Shapes: 56

There are three functions to read these kinds of data: readShapePoints,
readShapeLines, and readShapePoly. They are matched by equivalent export-
ing functions: writePolyShape, writeLinesShape, writePointsShape, using local
copies of shapelib functions otherwise available in rgdal in the OGR frame-
work. The RArcInfo package also provides local access to OGR functionality,
for reading ArcGIS™ binary vector coverages, but with the addition of a util-
ity function for converting e00 format files into binary coverages; full details
are given in Gómez-Rubio and López-Qúılez (2005).

4.3 Raster File Formats

There are very many raster and image formats; some allow only one band of
data, others assume that data bands are Red-Green-Blue (RGB), while yet
others are flexible and self-documenting. The simplest formats are just rec-
tangular blocks of uncompressed data, like a matrix, but sometimes with row
indexing reversed. Others are compressed, with multiple bands, and may be
interleaved so that subscenes can be retrieved without unpacking the whole

94 4 Spatial Data Import and Export

image. There are now a number of R packages that support image import
and export, such as the rimage and biOps packages and the EBImage pack-
age in the Bioconductor project. The requirements for spatial raster data
handling include respecting the coordinate reference system of the image, so
that specific solutions are needed. There is, however, no direct support for
the transformation or ‘warping’ of raster data from one coordinate reference
system to another.

4.3.1 Using GDAL Drivers in rgdal

Many drivers are available in rgdal in the readGDAL function, which – like
readOGR – finds a usable driver if available and proceeds from there. Using
arguments to readGDAL, subregions or bands may be selected, and the data
may be decimated, which helps handle large rasters. The simplest approach is
just to read all the data into the R workspace – here we will the same excerpt
from the Shuttle Radar Topography Mission (SRTM) flown in 2000, for the
Auckland area as in Chap. 2.

> auck_el1 <- readGDAL("70042108.tif")

70042108.tif has GDAL driver GTiff

and has 1200 rows and 1320 columns

> summary(auck_el1)

Object of class SpatialGridDataFrame

Coordinates:

min max

x 174.2 175.3

y -37.5 -36.5

Is projected: FALSE

proj4string :

[+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs

+towgs84=0,0,0]

Number of points: 2

Grid attributes:

cellcentre.offset cellsize cells.dim

x 174.20042 0.0008333333 1320

y -37.49958 0.0008333333 1200

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.403e+38 0.000e+00 1.000e+00 -1.869e+34 5.300e+01 6.860e+02

> is.na(auck_el1$band1) <- auck_el1$band1 <= 0 | auck_el1$band1 >

+ 10000

The readGDAL function is actually a wrapper for substantially more powerful
R bindings for GDAL written by Timothy Keitt. The bindings allow us to
handle very large data sets by choosing sub-scenes and re-sampling, using the

4.3 Raster File Formats 95

offset, region.dim, and output.dim arguments. The bindings work by opening
a data set known by GDAL using a GDALDriver class object, but only reading
the required parts into the workspace.

> x <- GDAL.open("70042108.tif")

> xx <- getDriver(x)

> xx

An object of class "GDALDriver"

Slot "handle":

<pointer: 0x83945f0>

> getDriverLongName(xx)

[1] "GeoTIFF"

> x

An object of class "GDALReadOnlyDataset"

Slot "handle":

<pointer: 0x83d4708>

> dim(x)

[1] 1200 1320

> GDAL.close(x)

Here, x is a derivative of a GDALDataset object, and is the GDAL data set
handle; the data are not in the R workspace, but all their features are there to
be read on demand. An open GDAL handle can be read into a SpatialGrid-
DataFrame, so that readGDAL may be done in pieces if needed. Information
about the file to be accessed may also be shown without the file being read,
using the GDAL bindings packaged in the utility function GDALinfo:

> GDALinfo("70042108.tif")

rows 1200

columns 1320

bands 1

ll.x 174.2

ll.y -36.5

res.x 0.0008333333

res.y 0.0008333333

oblique.x 0

oblique.y 0

driver GTiff

projection +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs

file 70042108.tif

96 4 Spatial Data Import and Export

We use the Meuse grid data set to see how data may be written out us-
ing GDAL, adding a set of towgs84 values from the GDAL bug tracker.18

The writeGDAL function can be used directly for drivers that support file cre-
ation. For other file formats, which can be made as copies of a prototype, we
need to create an intermediate GDAL data set using create2GDAL, and then
use functions operating on the GDAL data set handle to complete. First we
simply output inverse distance weighted interpolated values of Meuse Bank
logarithms of zinc ppm as a GeoTiff file.

> library(gstat)

> log_zinc <- krige(log(zinc) ~ 1, meuse, meuse.grid)["var1.pred"]

[inverse distance weighted interpolation]

> proj4string(log_zinc) <- CRS(proj4string(meuse.grid))

> summary(log_zinc)

Object of class SpatialPixelsDataFrame

Coordinates:

min max

x 178440 181560

y 329600 333760

Is projected: TRUE

proj4string :

[+init=epsg:28992

+towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812

+proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889

+k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m

+no_defs]

Number of points: 3103

Grid attributes:

cellcentre.offset cellsize cells.dim

x 178460 40 78

y 329620 40 104

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.791 5.484 5.694 5.777 6.041 7.482

> writeGDAL(log_zinc, fname = "log_zinc.tif", driver = "GTiff",

+ type = "Float32", options = "INTERLEAVE=PIXEL")

> GDALinfo("log_zinc.tif")

rows 104

columns 78

bands 1

ll.x 178440

ll.y 333760

18 http://trac.osgeo.org/gdal/ticket/1987; newer versions of PROJ4/GDAL
may include the correct +towgs84 parameter values.

4.3 Raster File Formats 97

res.x 40

res.y 40

oblique.x 0

oblique.y 0

driver GTiff

projection +proj=sterea +lat_0=52.15616055555555

+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000

+y_0=463000 +ellps=bessel +units=m +no_defs

file log_zinc.tif

The output file can for example be read into ENVI™ directly, or into Arc-
GIS™ via the ‘Calculate statistics’ tool in the Raster section of the Toolbox,
and displayed by adjusting the symbology classification.

4.3.2 Writing a Google Earth™ Image Overlay

Our next attempt to export a raster will be more ambitious; in fact we can
use this technique to export anything that can be plotted on a PNG graphics
device. We export a coloured raster of interpolated log zinc ppm values to
a PNG file with an alpha channel for viewing in Google Earth™. Since the
target software requires geographical coordinates, a number of steps will be
needed. First we make a polygon to bound the study area and project it to
geographical coordinates:

> library(maptools)

> grd <- as(meuse.grid, "SpatialPolygons")

> proj4string(grd) <- CRS(proj4string(meuse))

> grd.union <- unionSpatialPolygons(grd, rep("x", length(slot(grd,

+ "polygons"))))

> ll <- CRS("+proj=longlat +datum=WGS84")

> grd.union.ll <- spTransform(grd.union, ll)

Next we construct a suitable grid in geographical coordinates, as our target
object for export, using the GE_SpatialGrid wrapper function. This grid is also
the container for the output PNG graphics file, so GE_SpatialGrid also returns
auxiliary values that will be used in setting up the png graphics device within
R. We use the overlay method to set grid cells outside the river bank area to
NA, and then discard them by coercion to a SpatialPixelsDataFrame:

> llGRD <- GE_SpatialGrid(grd.union.ll)

> llGRD_in <- overlay(llGRD$SG, grd.union.ll)

> llSGDF <- SpatialGridDataFrame(grid = slot(llGRD$SG,

+ "grid"), proj4string = CRS(proj4string(llGRD$SG)),

+ data = data.frame(in0 = llGRD_in))

> llSPix <- as(llSGDF, "SpatialPixelsDataFrame")

We use idw from the gstat package to make an inverse distance weighted
interpolation of zinc ppm values from the soil samples available, also, as here,
when the points are in geographical coordinates; interpolation will be fully
presented in Chap. 8:

98 4 Spatial Data Import and Export

Fig. 4.3. Interpolated log zinc ppm for the Meuse Bank data set shown in Google
Earth™

> meuse_ll <- spTransform(meuse, CRS("+proj=longlat +datum=WGS84"))

> llSPix$pred <- idw(log(zinc) ~ 1, meuse_ll, llSPix)$var1.pred

[inverse distance weighted interpolation]

Since we have used GE_SpatialGrid to set up the size of an R png graphics
device, we can now use it as usual, here with image. In practice, any base
graphics methods and functions can be used to create an image overlay. Fi-
nally, after closing the graphics device, we use kmlOverlay to write a *.kml

file giving the location of the overlay and which will load the image at that
position when opened in Google Earth™, as shown in Fig. 4.3:

> png(file = "zinc_IDW.png", width = llGRD$width,height = llGRD$height,

+ bg = "transparent")

> par(mar = c(0, 0, 0, 0), xaxs = "i", yaxs = "i")

> image(llSPix, "pred", col = bpy.colors(20))

> dev.off()

> kmlOverlay(llGRD, "zinc_IDW.kml", "zinc_IDW.png")

4.3.3 Other Import/Export Functions

There is a simple readAsciiGrid function in maptools that reads ESRI™ Arc
ASCII grids into SpatialGridDataFrame objects; it does not handle CRS and
has a single band. The companion writeAsciiGrid is for writing Arc ASCII
grids. It is also possible to use connections to read and write arbitrary binary
files, provided that the content is not compressed. Functions in the R image
analysis packages referred to above may also be used to read and write a
number of image formats. If the grid registration slots in objects of classes
defined in the pixmap package are entered manually, these objects may also
be used to hold raster data.

4.4 Grass 99

4.4 Grass

GRASS19 is a major open source GIS, originally developed as the Geographic
Resources Analysis Support System by the U.S. Army Construction Engi-
neering Research Laboratories (CERL, 1982–1995), and subsequently taken
over by its user community. GRASS has traditional strengths in raster data
handling, but two advances (floating point rasters and support for missing
values) were not completed when development by CERL was stopped. These
were added for many modules in the GRASS 5.0 release; from GRASS 6.0, new
vector support has been added. GRASS is a very large but very simple system
– it is run as a collection of separate programs built using shared libraries of
core functions. There is then no GRASS ‘program’, just a script setting envi-
ronment variables needed by the component programs. GRASS does interact
with the OSGeo stack of applications, and GRASS functionality, including
the R interface, is available in the Quantum GIS desktop GIS application.

An R package to interface with GRASS has been available on CRAN –
GRASS – since the release of GRASS 5.0. It provided a compiled interface to
raster and sites data, but not vector data, and included a frozen copy of the
core GRASS GIS C library, modified to suit the fact that its functions were
being used in an interactive, longer-running program like R. The GRASS pack-
age is no longer being developed, but continues to work for users of GRASS 5.
The GRASS 5 interface is documented in Neteler and Mitasova (2004, pp.
333–354) and Bivand (2000).

The current GRASS releases, from GRASS 6.0, with GRASS 6.2 released
in October 2006 and 6.3 due in 2008, have a different interface, using the sp
classes presented in Chap. 2. Neteler and Mitasova (2008) describe GRASS 6
fully, and present this interface on pp. 353–364. The spgrass6 package depends
on other packages for moving data between GRASS and R, chiefly using rgdal,
because GRASS also uses GDAL and OGR as its main import/export mech-
anisms. The interface works by exchanging temporary files in formats that
both GRASS and rgdal know. This kind of loose coupling is less of a burden
than it was before, with smaller, slower machines. This is why the GRASS 5
interface was tight-coupled, with R functions reading from and writing to the
GRASS database directly. Using GRASS plug-in drivers in GDAL/OGR is
another possibility for reading GRASS data directly into R through rgdal,
without needing spgrass6; spgrass6 can use these plug-in drivers if present for
reading GRASS data.

GRASS uses the concept of a working region or window, specifying both
the viewing rectangle and – for raster data – the resolution. The data in
the GRASS database can be from a larger or smaller region and can have
a different resolution, and are re-sampled to match the working region for
analysis. This current window should determine the way in which raster data
are retrieved and transferred.

19 http://grass.osgeo.org/.

100 4 Spatial Data Import and Export

GRASS also uses the concepts of a location, with a fixed and uniform
coordinate reference system, and of mapsets within the location. The location
is typically chosen at the start of a work session, and with the location, the
user will have read access to possibly several mapsets, and write access to
some, probably fewer, to avoid overwriting the work of other users of the
location.

Intermediate temporary files are the chosen solution for interaction be-
tween GRASS and R in spgrass6, using shapefiles for vector data and single
band BIL (Band Interleaved by Line) binary files for raster data. Note that
missing values are defined and supported for GRASS raster data, but that
missing values for vector data are not uniformly defined or supported.

Support for GRASS under Cygwin is provided and known to function
satisfactorily. Native Windows GRASS has been tested only with Quantum
GIS, but is expected to become more widely available as GRASS 6.3 has now
been released, using MSYS rather than Cygwin for Unix shell emulation (a
Windows spgrass6 binary is on CRAN). Mac OSX is treated as Unix, and
spgrass6 is installed from source (like rgdal). The spgrass6 package should be
installed with the packages it depends upon, sp and rgdal.

R is started from within a GRASS session from the command line, and the
spgrass6 loaded with its dependencies:

> system("g.version", intern = TRUE)

[1] "GRASS 6.3.cvs (2007) "

> library(spgrass6)

> gmeta6()

gisdbase /home/rsb/topics/grassdata

location spearfish60

mapset rsb

rows 477

columns 634

north 4928010

south 4913700

west 589980

east 609000

nsres 30

ewres 30

projection +proj=utm +zone=13 +a=6378206.4 +rf=294.9786982 +no_defs

+nadgrids=/home/rsb/topics/grass63/grass-6.3.cvs/etc/nad/conus

+to_meter=1.0

The examples used here are taken from the ‘Spearfish’ sample data location
(South Dakota, USA, 103.86W, 44.49N), perhaps the most typical for GRASS
demonstrations. The gmeta6 function is simply a way of summarising the cur-
rent settings of the GRASS location and region within which we are working.
Data moved from GRASS over the interface will be given category labels if

4.4 Grass 101

present. The interface does not support the transfer of factor level labels from
R to GRASS, nor does it set colours or quantisation rules. The readRAST6 com-
mand here reads elevation values into a SpatialGridDataFrame object, treating
the values returned as floating point and the geology categorical layer into a
factor:

> spear <- readRAST6(c("elevation.dem", "geology"), cat = c(FALSE,

+ TRUE))

> summary(spear)

Object of class SpatialGridDataFrame

Coordinates:

min max

coords.x1 589980 609000

coords.x2 4913700 4928010

Is projected: TRUE

proj4string :

[+proj=utm +zone=13 +a=6378206.4 +rf=294.9786982 +no_defs

+nadgrids=/home/rsb/topics/grass63/grass-6.3.cvs/etc/nad/conus

+to_meter=1.0]

Number of points: 2

Grid attributes:

cellcentre.offset cellsize cells.dim

1 589995 30 634

2 4913715 30 477

Data attributes:

elevation.dem geology

Min. : 1066 sandstone:74959

1st Qu.: 1200 limestone:61355

Median : 1316 shale :46423

Mean : 1354 sand :36561

3rd Qu.: 1488 igneous :36534

Max. : 1840 (Other) :37636

NA's :10101 NA's : 8950

When the cat argument is set to TRUE, the GRASS category labels are
imported and used as factor levels; checking back, we can see that they agree:

> table(spear$geology)

metamorphic transition igneous sandstone limestone

11693 142 36534 74959 61355

shale sandy shale claysand sand

46423 11266 14535 36561

> system("r.stats --q -cl geology", intern = TRUE)

[1] "1 metamorphic 11693" "2 transition 142" "3 igneous 36534"

[4] "4 sandstone 74959" "5 limestone 61355" "6 shale 46423"

[7] "7 sandy shale 11266" "8 claysand 14535" "9 sand 36561"

[10] "* no data 8950"

102 4 Spatial Data Import and Export

1000 1200 1400 1600 1800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
n(

x)

Fig. 4.4. Empirical cumulative distribution function of elevation for the Spearfish
location

Fig. 4.5. Boxplots of elevation by geology category, Spearfish location

Figure 4.4 shows an empirical cumulative distribution plot of the elevation
values, giving readings of the proportion of the study area under chosen eleva-
tions. In turn Fig. 4.5 shows a simple boxplot of elevation by geology category,
with widths proportional to the share of the geology category in the total area.

4.4 Grass 103

We have used the readRAST6 function to read from GRASS rasters into R; the
writeRAST6 function allows a single named column of a SpatialGridDataFrame

object to be exported to GRASS.
The spgrass6 package also provides functions to move vector features and

associated attribute data to R and back again; unlike raster data, there is
no standard mechanism for handling missing values. The readVECT6 function
is used for importing vector data into R, and writeVECT6 for exporting to
GRASS. The first data set to be imported from GRASS contains the point
locations of sites where insects have been monitored, the second is a set of
stream channel centre-lines:

> bugsDF <- readVECT6("bugsites")

> vInfo("streams")

points lines boundaries centroids areas islands

0 104 12 4 4 4

faces kernels

0 0

> streams <- readVECT6("streams", type = "line,boundary",

+ remove.duplicates = FALSE)

The remove.duplicates argument is set to TRUE when there are only, for
example lines or areas, and the number present is greater than the data count
(the number of rows in the attribute data table). The type argument is used
to override type detection when multiple types are non-zero, as here, where
we choose lines and boundaries, but the function guesses areas, returning just
filled water bodies.

Because different mechanisms are used for passing information concerning
the GRASS location coordinate reference system for raster and vector data,
the PROJ.4 strings often differ slightly, even though the actual CRS is the
same. We can see that the representation for the point locations of beetle sites
does differ here; the vector representation is more in accord with standard
PROJ.4 notation than that for the raster layers, even though they are the
same. In the summary of the spear object above, the ellipsoid was represented
by +a and +rf tags instead of the +ellps tag using the clrk66 value:

> summary(bugsDF)

Object of class SpatialPointsDataFrame

Coordinates:

min max

coords.x1 590232 608471

coords.x2 4914096 4920512

Is projected: TRUE

proj4string :

[+proj=utm +zone=13 +ellps=clrk66 +datum=NAD27 +units=m

+no_defs +nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat]

104 4 Spatial Data Import and Export

Number of points: 90

Data attributes:

cat str1

Min. : 1.00 Beetle site:90

1st Qu.:23.25

Median :45.50

Mean :45.50

3rd Qu.:67.75

Max. :90.00

This necessitates manual assignment from one representation to the other
in some occasions, and is due to GRASS using non-standard but equivalent
extensions to PROJ.4.

There are a number of helper functions in the spgrass6 package, one
gmeta2grd to generate a GridTopology object from the current GRASS region
settings. This is typically used for interpolation from point data to a raster
grid, and may be masked by coercion from a SpatialGrid to a SpatialPixels
object having set cells outside the study area to NA. A second utility function
for vector data uses the fact that GRASS 6 uses a topological vector data
model. The vect2neigh function returns a data frame with the left and right
neighbours of arcs on polygon boundaries, together with the length of the arcs.
This can be used to modify the weighting of polygon contiguities based on the
length of shared boundaries. Like GRASS, GDAL/OGR, PROJ.4, and other
OSGeo projects, the functions offered by spgrass6 are changing, and current
help pages should be consulted to check correct usage.

4.4.1 Broad Street Cholera Data

Even though we know that John Snow already had a working hypothesis about
cholera epidemics, his data remain interesting, especially if we use a GIS to
find the street distances from mortality dwellings to the Broad Street pump in
Soho in central London. Brody et al. (2000) point out that John Snow did not
use maps to ‘find’ the Broad Street pump, the polluted water source behind the
1854 cholera epidemic, because he associated cholera with water contaminated
with sewage, based on earlier experience. The accepted opinion of the time was
that cholera was most probably caused by a ‘concentrated noxious atmospheric
influence’, and maps could just as easily have been interpreted in support of
such a point source.

The specific difference between the two approaches is that the atmospheric
cause would examine straight-line aerial distances between the homes of the
deceased and an unknown point source, while a contaminated water source
would rather look at the walking distance along the street network to a pump
or pumps. The basic data to be used here were made available by Jim Detwiler,
who had collated them for David O’Sullivan for use on the cover of O’Sullivan
and Unwin (2003), based on earlier work by Waldo Tobler and others. The
files were a shapefile with counts of deaths at front doors of houses and a

4.4 Grass 105

georeferenced copy of the Snow map as an image; the files were registered in
the British National Grid CRS. The steps taken in GRASS were to set up a
suitable location in the CRS, to import the image file, the file of mortalities,
and the file of pump locations.

To measure street distances, the building contours were first digitised as a
vector layer, cleaned, converted to raster leaving the buildings outside the
street mask, buffered out 4 m to include all the front door points within
the street mask, and finally distances measured from each raster cell in the
buffered street network to the Broad Street pump and to the nearest other
pump. These operations in summary were as follows:

v.digit -n map=vsnow4 bgcmd="d.rast map=snow"

v.to.rast input=vsnow4 output=rfsnow use=val value=1

r.buffer input=rfsnow output=buff2 distances=4

r.cost -v input=buff2 output=snowcost_not_broad \

start_points=vpump_not_broad

r.cost -v input=buff2 output=snowcost_broad start_points=vpump_broad

The main operation here is r.cost, which uses the value of 2.5 m stored in
each cell of buff2, which has a resolution of 2.5 m, to cumulate distances from
the start points in the output rasters. The operation is carried out for the
other pumps and for the Broad Street pump. This is equivalent to finding the
line of equal distances shown on the extracts from John Snow’s map shown
in Brody et al. (2000, p. 65). It is possible that there are passages through
buildings not captured by digitising, so the distances are only as accurate as
can now be reconstructed.

> buildings <- readVECT6("vsnow4")

> sohoSG <- readRAST6(c("snowcost_broad", "snowcost_not_broad"))

For visualisation, we import the building outlines, and the two distance
rasters. Next we import the death coordinates and counts, and overlay the
deaths on the distances, to extract the distances for each house with mortal-
ities – these are added to the deaths object, together with a logical variable
indicating whether the Broad Street pump was closer (for this distance mea-
sure) or not:

> deaths <- readVECT6("deaths3")

> o <- overlay(sohoSG, deaths)

> deaths <- spCbind(deaths, as(o, "data.frame"))

> deaths$b_nearer <- deaths$snowcost_broad < deaths$snowcost_not_broad

> by(deaths$Num_Cases, deaths$b_nearer, sum)

INDICES: FALSE

[1] 221

--

INDICES: TRUE

[1] 357

106 4 Spatial Data Import and Export

FALSE

0
40

0
30

0
20

0
10

0

0
40

0
30

0
20

0
10

0

Broad Street

FALSE

Other pump

TRUE TRUE

Fig. 4.6. Comparison of walking distances from homes of fatalities to the Broad
Street pump or another pump by whether the Broad Street pump was closer or not

There are not only more mortalities in houses closer to the Broad Street
pump, but the distributions of distances are such that their inter-quartile
ranges do not overlap. This can be seen in Fig. 4.6, from which a remaining
question is why some of the cases appear to have used the Broad Street pump
in spite of having a shorter distance to an alternative. Finally, we import the
locations of the pumps to assemble a view of the situation, shown in Fig. 4.7.
The grey scaled streets indicate the distance of each 2.5 m raster cell from the
Broad Street pump along the street network. The buildings are overlaid on
the raster, followed by proportional symbols for the number of mortalities per
affected house, coded for whether they are closer to the Broad Street pump
or not, and finally the pumps themselves.

> nb_pump <- readVECT6("vpump_not_broad")

> b_pump <- readVECT6("vpump_broad")

4.5 Other Import/Export Interfaces

The classes for spatial data introduced in sp have made it easier to imple-
ment and maintain the import and export functions described earlier in this
chapter. In addition, they have created opportunities for writing other inter-
faces, because the structure of the objects in R is better documented. In this
section, a number of such interfaces will be presented, with others to come in

4.5 Other Import/Export Interfaces 107

Fig. 4.7. The 1854 London cholera outbreak near Golden Square

the future, hosted in maptools or other packages. Before going on to discuss
interfaces with external applications, conversion wrappers for R packages will
be mentioned.

The maptools package contains interface functions to convert selected sp
class objects to classes used in the spatstat for point pattern analysis – these
are written as coercion methods to spatstat ppp and owin classes. maptools also
contains the SpatialLines2PolySet and SpatialPolygons2PolySet functions to
convert sp class objects to PolySet class objects as defined in the PBSmapping
package, and a pair of matching functions in the other direction. This package
provides a number of GIS procedures needed in fisheries research (PBS is the
name of the Pacific Biological Station in Nanaimo, British Columbia, Canada).

There are also interface functions in the adehabitat package for conver-
sion between sp class objects and adehabitat kasc and asc gridded objects,
adehabitat area polygon objects, and adehabitat traj and ltraj trajectory
objects. The package itself is documented in Calenge (2006), and includes
many tools for the analysis of space and habitat use by animals.

108 4 Spatial Data Import and Export

4.5.1 Analysis and Visualisation Applications

While many kinds of data analysis can be carried out within the R envi-
ronment, it is often very useful to be able to write out files for use in other
applications or for sharing with collaborators not using R. These functions live
in maptools and will be extended as required. The sp2tmap function converts a
SpatialPolygons object for use with the Stata™ tmap contributed command,20

by creating a data frame with the required columns. The data frame returned
by the function is exported using write.dta from the foreign package, which
should also be used to export the attribute data with the polygon tagging key.
The sp2WB function exports a SpatialPolygons object as a text file in S-PLUS™
map format to be imported by WinBUGS.

The GeoXp package provides some possibilities for interactive statistical
data visualisation within R, including mapping. The R graphics facilities are
perhaps better suited to non-interactive use, however, especially as it is easy to
write data out to Mondrian.21 Mondrian provides fully linked multiple plots,
and although the screen can become quite ‘busy’, users find it easy to explore
their data in this environment. The function sp2Mondrian in maptools writes
out two files, one with the data, the other with the spatial objects from a
SpatialPolygonsDataFrame object for Mondrian to read; the polygon format
before Mondrian 1.0 used a single file and may still be used, controlled by an
additional argument.

> sp2Mondrian(scot_BNG, "scot_BNG.txt")

The example we use here is the Scottish lip cancer SpatialPolygons-

DataFrame object in the British National Grid projection (Mondrian assumes a
planar map). A screen shot of two Mondrian plots is shown in Fig. 4.8, with a
map view and a parallel boxplot, where a group of districts has been selected
on the map, and is shown as a subset on the linked display.

4.5.2 TerraLib and aRT

The aRT package22 provides an advanced modular interface to TerraLib.23

TerraLib is a GIS classes and functions library intended for the development
of multiple GIS tools. Its main aim is to enable the development of a new
generation of GIS applications, based on the technological advances on spatial
databases. TerraLib defines the way that spatial data are stored in a database
system, and can use MySQL, PostgreSQL, Oracle, or Access as a back-end.
The library itself can undertake a wide range of GIS operations on the data
stored in the database, as well as storing and retrieving the data as spatial
objects from the database system.
20 http://www.stata.com/search.cgi?query=tmap.
21 http://rosuda.org/Mondrian/.
22 http://leg.ufpr.br/aRT/.
23 http://www.terralib.org/.

4.5 Other Import/Export Interfaces 109

Fig. 4.8. Screen shot of two linked Mondrian plots: a map of the Empirical Bayes
smooth and a parallel boxplot for four variables, with the selected districts on the
map (three northern mainland counties, Outer Hebrides, Orkney, and Shetland) split
out as overlay boxplots

The aRT package interfaces sp classes with TerraLib classes, permitting
data to flow between R, used as a front-end system interacting with the user,
through TerraLib and the back-end database system. One of the main ob-
jectives of aRT is to do spatial queries and operations in R. Because these
operations are written to work efficiently in TerraLib, a wide range of overlay
and buffering operations can be carried out, without them being implemented
in R itself. Operations on the geometries, such as whether they touch, how far
apart they are, whether they contain holes, polygon unions, and many others,
can be handed off to TerraLib.

A further innovation is the provision of a wrapper for the R compute en-
gine, allowing R with aRT to be configured with TerraLib between the back-
end database system and a front-end application interacting with the user.
This application, for example TerraView, can provide access through menus
to spatial data analysis functionality coded in R using aRT.24 All of this soft-
ware is released under open source licences, and offers considerable opportu-
nities for building non-proprietary customised systems for medium and larger
organisations able to commit resources to C++ programming. Organisations
running larger database systems are likely to have such resources anyway, so
aRT and TerraLib provide a real alternative for fresh spatial data handling
projects.

24 Andrade Neto and Ribeiro Jr. (2005).

110 4 Spatial Data Import and Export

4.5.3 Other GIS and Web Mapping Systems

The Rpad package25 is a general-purpose interactive, web-based analysis pro-
gram, and Rpad pages are interactive workbook-type sheets based on R. Some
of the examples26 use spatial data directly, and it is quite practical to han-
dle smaller or moderate-sized point data without needing bulky client-side
applets. Integration with R results is automatic, without the need for much
extra software on the server side.

An interface package – RSAGA – has been provided for SAGA GIS;27 like
the GRASS 6 interface, it uses system to pass commands to external software.

For raster or polygon data, it may be sensible to use MapServer28 or alter-
native software. MapServer integrates and renders spatial data for the web,
and because it uses the same open source geospatial toolset as the packages
described in this chapter (PROJ.4, GDAL/OGR), it is possible to add R as a
compute engine to websites running MapServer with little difficulty. It is also
possible to set up MapServer as a Web Feature Server, which serves the actual
map data encapsulated in XML wrappers instead of rendering the map for
display on a web browser; Mitchell (2005) contains a good deal of information
on providing web mapping facilities.

In the discussion above, integration between R and GIS has principally
taken the form of file transfer. It is possible to use other mechanisms, similar
in nature to the embedding of R in TerraView using aRT. One example is
given by Tait et al. (2004), using the R StatConnector (D)COM mechanism to
use R as a back-end from ArcGIS™. The specific context is the need to provide
epidemiologists using ArcGIS™ for animal disease control and detection with
point pattern analysis tools, using a GIS interface. The prototype was a system
using splancs running in R to calculate results from data passed from ArcGIS™,
with output passed back to ArcGIS™ for display. A practical difficulty of
embedding both R and splancs on multiple workstations is that of software
installation and maintenance.

A second example is ArcRstats,29 for producing multivariate habitat pre-
diction rasters using ArcGIS™ and R for interfacing classification and regres-
sion trees, generalised linear models, and generalised additive models. It is
implemented using the Python interface introduced into ArcGIS™ from ver-
sion 9, and then the Python win32com.client module to access the R Stat-

Connector (D)COM mechanism. The current release of ArcRstats uses the sp,
maptools, and rgdal packages to interface spatial data, and RODBC to work
with Access formated geodatabases, in addition to a wide range of analysis
functions, including those from the spatstat package.

25 http://www.rpad.org/Rpad/.
26 http://www.rpad.org/Rpad/InterruptionMap.Rpad.
27 http://www.saga-gis.uni-goettingen.de/html/index.php.
28 http://mapserver.gis.umn.edu/.
29 http://www.env.duke.edu/geospatial/software/.

4.6 Installing rgdal 111

The marine geospatial ecology tools project30 follows up the work begun
in ArcRstats, providing for execution in many environments, and using the
Python route through the COM interface to ArcGIS™. It is not hard to write
small Python scripts to interface R and ArcGIS™ through temporary files
and the system function. This is illustrated by the RPyGeo package, which
uses R to write Python scripts for the ArcGIS™ geoprocessor. The use of R
Python interface is not as fruitful as it might be, because ArcGIS™ bundles
its own usually rather dated version of Python, and ArcGIS™ itself only runs
on Windows and is rather expensive, certainly compared to GRASS.

4.6 Installing rgdal

Because rgdal depends on external libraries, on GDAL and PROJ.4, and par-
ticular GDAL drivers may depend on further libraries, installation is not as
easy as with self-contained R packages. Only the Windows binary package
is self-contained, with a basic set of drivers available. For Linux/Unix and
MacOSX, it is necessary to install rgdal from source, after first having in-
stalled the external dependencies. Users of open source GIS applications such
as GRASS will already have GDAL and PROJ.4 installed anyway, because
they are required for such applications.

In general, GDAL and PROJ.4 will install from source without difficulty,
but care may be required to make sure that libraries needed for drivers are
available and function correctly. If the programs proj, gdalinfo, and ogrinfo

work correctly for data sources of interest after GDAL and PROJ.4 have been
installed, then rgdal will also work correctly. Mac OSX users may find William
Kyngesburye’s frameworks31 a useful place to start, if installation from source
seems forbidding. More information is available on the ‘maps’ page at the Rgeo
website,32 and by searching the archives of the R-sig-geo mailing list.

Windows users needing other drivers, and for whom conversion using pro-
grams in the FWTools33 binary for Windows is not useful, may choose to
install rgdal from source, compiling the rgdal DLL with VC++ and linking
against the FWTools DLLs – see the inst/README.windows file in the source
package for details.

30 http://code.env.duke.edu/projects/mget.
31 http://www.kyngchaos.com/software/unixport/frameworks.
32 http://www.r-project.org/Rgeo.
33 http://fwtools.maptools.org.

5

Further Methods for Handling Spatial Data

This chapter is concerned with a more detailed explanation of some of the
methods that are provided for working with the spatial classes described in
Chap. 2. We first consider the question of the spatial support of observations,
going on to look at overlay and sampling methods for a range of classes of
spatial objects. Following this, we cover combining the data stored in the
data slot of Spatial*DataFrame objects with additional data stored as vectors
and data frames, as well as the combination of spatial objects. We also apply
some of the functions that are available for handling and checking polygon
topologies, including the dissolve operation.

5.1 Support

In data analysis in general, the relationship between the abstract constructs
we try to measure and the operational procedures used to make the measure-
ments is always important. Very often substantial metadata volumes are gen-
erated to document the performance of the instruments used to gather data.
Naturally, the same applies to spatial data. Positional data need as much care
in documenting their collection as other kinds of data. When approximations
are used, they need to be recorded as such. Part of the issue is the correct
recording of projection and datum, which are covered in Chap. 4. The time-
stamping of observations is typically useful, for example when administrative
boundaries change over time.

The recording of position for surveying, for example for a power company,
involves the inventorying of cables, pylons, transformer substations, and other
infrastructure. Much GIS software was developed to cater for such needs, in-
ventory rather than analysis. For inventory, arbitrary decisions, such as placing
the point coordinate locating a building by the right-hand doorpost facing the
door from the outside, have no further consequences. When, however, spatial
data are to be used for analysis and inference, the differences between arbitrary

114 5 Further Methods for Handling Spatial Data

assumptions made during observation and other possible spatial representa-
tions of the phenomena of interest will feed through to the conclusions. The
adopted representation is known as its support, and is discussed by Waller
and Gotway (2004, pp. 38–39). The point support of a dwelling may be taken
as the point location of its right-hand doorpost, a soil sample may have point
support of a coordinate surveyed traditionally or by GPS. But the dwelling
perhaps should have polygonal support, and in collecting soil samples, most
often the point represents a central position in the circle or square used to
gather a number of different samples, which are then bagged together for
measurement.

An example of the effects of support is the impact of changes in voting
district boundaries in election systems, which are not strictly proportional.
The underlying voting behaviour is fixed, but different electoral results can
be achieved by tallying results in different configurations or aggregations of
the voters’ dwellings.1 When carried out to benefit particular candidates or
parties, this is known as gerrymandering. The aggregations are arbitrary poly-
gons, because they do not reflect a political entity as such. This is an example
of change of support, moving from the position of the dwelling of the voter
to some aggregation. Change of support is a significant issue in spatial data
analysis, and is introduced in Schabenberger and Gotway (2005, pp. 284–285).
A much more thorough treatment is given by Gotway and Young (2002), who
show how statistical methods can be used to carry through error associated
with change of support to further steps in analysis. In a very similar vein,
it can be argued that researchers in particular subject domains should con-
sider involving statisticians from the very beginning of their projects, to allow
sources of potential uncertainty to be instrumented if possible. One would seek
to control error propagation when trying to infer from the data collected later
during the analysis and reporting phase (Guttorp, 2003; Wikle, 2003). An
example might be marine biologists and oceanographers not collecting data
at the same place and time, and hoping that data from different places and
times could be readily combined without introducing systematic error.

One of the consequences of surveying as a profession being overtaken by
computers, and of surveying data spreading out to non-surveyor users, is that
understanding of the imprecision of positional data has been diluted. Some of
the imprecision comes from measurement error, which surveyors know from
their training and field experience. But a digital representation of a coordi-
nate looks very crisp and precise, deceptively so. Surveying and cartographic
representations are just a summary from available data. Where no data were
collected, the actual values are guesswork and can go badly wrong, as users of
maritime charts routinely find. Further, support is routinely changed for pur-
poses of visualisation: contours or filled contours representing a grid make the

1 The CRAN BARD package for automated redistricting and heuristic exploration
of redistricter revealed preference is an example of the use of R for studying this
problem.

5.1 Support 115

Fig. 5.1. Image plot and contour plot representations of Maunga Whau from the
standard R volcano data set, for the same elevation class intervals (rotated to put
north at the top)

data look much less ‘chunky’ than an image plot of the same data, as Fig. 5.1
shows. In fact, the data were digitised from a paper map by Ross Ihaka, as
much other digital elevation data have been, and the paper map was itself
a representation of available data, not an exact reproduction of the terrain.
Even SRTM data can realistically be used only after cleaning; the 3 arcsec
data used in Sect. 2.7 were re-sampled from noisier 1 arcsec data using a spe-
cific re-sampling and cleaning algorithm. A different algorithm would yield a
slightly different digital elevation model.

While we perhaps expect researchers wanting to use R to analyse spatial
data to be applied domain scientists, it is worth noting that geographical in-
formation science, the field of study attempting to provide GIS with more
consistent foundations, is now actively incorporating error models into posi-
tion measurement, and into spatial queries based on error in observed values.
Say we are modelling crop yield based on soil type and other variables, and
our spatial query at point i returns "sand", when in fact the correct value at
that location is "clay", our conclusions will be affected. The general applica-
tion of uncertainty to spatial data in a GIS context is reviewed by Worboys
and Duckham (2004, pp. 328–358), and attribute error propagation is dis-
cussed by Heuvelink (1998). In an open computing environment like R, it is
quite possible to think of ‘uncertain’ versions of the ‘crisp’ classes dealt with
so far, in which, for example point position could be represented as a value
drawn from a statistical model, allowing the impact of positional uncertainty
on other methods of analysis to be assessed (see for example Leung et al.,
2004).

116 5 Further Methods for Handling Spatial Data

5.2 Overlay

Accepting that moving from one spatial representation to another is a typ-
ical operation performed with spatial data, overlay methods are provided
for a number of pairs of spatial data object types. Overlay methods involve
combining congruent or non-congruent spatial data objects, and only some
are provided directly, chiefly for non-congruent objects. Overlay operations
are mentioned by Burrough and McDonnell (1998, pp. 52–53) and covered in
much more detail by O’Sullivan and Unwin (2003, pp. 284–314) and Unwin
(1996), who show how many of the apparently deterministic inferential prob-
lems in overlay are actually statistical in nature, as noted earlier. The basic
approach is to query one spatial data object using a second spatial data object
of the same or of a different class. The query result will typically be another
spatial data object or an object pointing to one of the input objects. Overlay-
ing a SpatialPoints object with a SpatialPolygons object returns a vector of
numbers showing which Polygons object each coordinate in the SpatialPoints

object falls within – this is an extension of the point-in-polygon problem to
multiple points and polygons.

To continue the SRTM elevation data example, we can query auck_el1,
which is a SpatialGridDataFrame object, using the transect shown in Fig. 2.7,
stored as SpatialPoints object transect_sp. Using an overlay method, we
obtain the elevation values retrieved from querying the grid cells as a Spa-

tialPointsDataFrame object.

> summary(transect_sp)

Object of class SpatialPoints

Coordinates:

min max

coords.x1 174.45800 175.29967

coords.x2 -37.03625 -37.03625

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

Number of points: 1011

> transect_el1 <- overlay(auck_el1, transect_sp)

> summary(transect_el1)

Object of class SpatialPointsDataFrame

Coordinates:

min max

coords.x1 174.45800 175.29967

coords.x2 -37.03625 -37.03625

Is projected: FALSE

proj4string :

[+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs]

Number of points: 1011

5.2 Overlay 117

el
ev

at
io

n,
 m

0
20

0
50

0

174.6°E

0 200 400 600

0.
8

0.
4

0

elevation, m

174.8°E 175°E 175.2°E

Fig. 5.2. Elevation values along a west–east transect, and a plot of the empirical
cumulative distribution function values for elevation on the transect

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 22 101 128 686

Figure 5.2 shows two views of the resulting data object, first a cross-section of
elevation along the transect and below that a plot of the empirical cumulative
distribution function for the transect data. This is effectively the same as the
diagram termed the hypsometric curve by geomorphologists, the cumulative
height frequency curve, with the axes swapped.

Spatial queries of this kind are very common, reading off raster data for
sample points of known events or phenomena of interest. Following modelling,
the same data are then used to predict the value of the phenomenon of interest
for unobserved raster cells. The study reported by Wang and Unwin (1992)
on landslide distribution on loess soils is an example, involving the spatial
querying of slope and aspect raster layers calculated from a digital elevation
model, and lithology classes. As Unwin (1996, pp. 132–136) points out, there
are two key issues in the analysis. First, there is considerable error present
in the input raster data, and that the only field data collected are for sites
at which landslides are known to have taken place. This means that some
landslides may not have been included. Second, no matching data are available
for other locations at which no landslides have been observed. This context of
no control being available on the phenomena of interest is quite common in
applied environmental research.

118 5 Further Methods for Handling Spatial Data

5.3 Spatial Sampling

One way of trying to get control over data in a research setting like the
one described might be to sample points from the total study area, to be
able to examine whether the observed phenomena seem to be associated with
particular ranges of values of the supposed environmental ‘drivers’. Sample
design is not typically paid much attention in applied spatial data analysis,
very often for practical reasons, for example the need to handle incoming data
as they flow in, rather than being able to choose which data to use. In the
case of veterinary epidemiology, it is not easy to impose clear control because
of the time pressure to offer policy advice. Schemes for spatial sampling have
been given in the literature, for example by Ripley (1981, pp. 19–27), and they
are available in sp using generic method spsample. Five sampling schemes are
available: "random", which places the points at random within the sampling
area; "regular", termed a centric systematic sample by Ripley and for which
the grid offset can be set, and "stratified" and "nonaligned", which are
implemented as variations on the "regular" scheme – "stratified" samples
one point at random in each cell, and "nonaligned" is a systematic masked
scheme using combinations of random x and y to yield a single coordinate in
each cell. The fifth scheme samples on a hexagonal lattice. The spatial data
object passed to the spsample method can be simply a Spatial object, in which
case sampling is carried out within its bounding box. It can be a line object,
when samples are taken along the line or lines. More typically, it is a polygon
object or a grid object, providing an observation window defining the study
area or areas.

Above, we examined SRTM elevation values along a transect crossing the
highest point in the region. We can get an impression of which parts of the
distribution of elevation values differ from those of the region as a whole by
sampling. In the first case, we sample within the GSHHS shoreline polygons
shown in Fig. 2.7, using the "random" sampling scheme; this scheme drops
points within lakes in polygons. The spsample methods may return Spatial-

Points objects with a different number of points than requested. The second
and third samples are taken from the SpatialPixelsDataFrame object omitting
the NA values offshore. They differ in using "random" and "regular" sampling
schemes, respectively. The selected points are shown in Fig. 5.3.

> set.seed(9876)

> polygon_random <- spsample(auck_gshhs, 1000, type = "random")

> polygon_random_el1 <- overlay(auck_el1, polygon_random)

> grid_random <- spsample(auck_el2, 1000, type = "random")

> grid_random_el1 <- overlay(auck_el1, grid_random)

> grid_regular <- spsample(auck_el2, 1000, type = "regular")

> grid_regular_el1 <- overlay(auck_el1, grid_regular)

minimum lower-hinge median upper-hinge maximum n

transect 0 0 22 128.0 686 1011

5.3 Spatial Sampling 119

polygon_random grid_random

grid_regular

0 200 400 600

ECDF

transect
samples

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Fig. 5.3. Use of the spsample method: three sets of SpatialPoints objects and
empirical cumulative distribution functions for elevation values for the sample points
over-plotted on the transect values shown in Fig. 5.2

polygon_random 0 24 56 103.0 488 1000

grid_random 1 22 54 108.0 595 985

grid_regular 2 23 53 108.5 507 1020

Once again, we overlay our SpatialPoints objects created by sampling
on the elevation SpatialGridDataFrame object. In this way we read off the
elevation values for our sampled points, and can tabulate their five number
summaries with that of the transect through the highest point. Both from the
output and from the over-plotted empirical cumulative distribution function
values shown in Fig. 5.3, we can see that the transect begins to diverge from the
region as a whole above the 40th percentile. There is little difference between
the three samples.

Alternative sampling schemes are contained in the spatstat package,
with many point process generating functions for various window objects.
The spsurvey package, using sp classes amongst other data representations,

120 5 Further Methods for Handling Spatial Data

supplements these with some general procedures and the US Environmen-
tal Protection Agency Aquatic Resources Monitoring Generalized Random
Tessellation Stratified procedure.2

5.4 Checking Topologies

In this section and the next, we look at a practical example involving the
cleaning of spatial objects originally read into R from shapefiles published by
the US Census. We then aggregate them up to metropolitan areas using a text
table also from the US Census.

The data in this case are for polygons representing county boundaries in
1990 of North Carolina, South Carolina, and Virginia, as shown in Fig. 5.4.
The attribute data for each polygon are the standard polygon identifiers,
state and county identifiers, and county names. All the spatial objects have
the same number of columns of attribute data of the same types and with the
same names. The files are provided without coordinate reference systems as
shapefiles; the metadata are used for choosing the CRS values.

84°W

32
°N

82°W 80°W 78°W 76°W

34
°N

36
°N

38
°N

40
°N

Fig. 5.4. The three states plotted from input spatial objects using different grey
colours for county boundaries

2 http://www.epa.gov/nheerl/arm/index.htm.

5.4 Checking Topologies 121

> library(rgdal)

> nc90 <- readOGR(".", "co37_d90")

> proj4string(nc90) <- CRS("+proj=longlat +datum=NAD27")

> sc90 <- readOGR(".", "co45_d90")

> proj4string(sc90) <- CRS("+proj=longlat +datum=NAD27")

> va90 <- readOGR(".", "co51_d90")

> proj4string(va90) <- CRS("+proj=longlat +datum=NAD27")

As read in, shapefiles usually have the polygon IDs set to the external file
feature sequence number from zero to one less than the number of features.
In our case, wanting to combine three states, we need to change the ID values
so that they are unique across the study area. We can use the FIPS code
(Federal Information Processing Standards Publication 6-4), which is simply
the two-digit state FIPS code placed in front of the three-digit within-state
FIPS county code, ending up with a five-digit string uniquely identifying each
county. We can also drop the first four attribute data columns, two of which
(area and perimeter) are misleading for objects in geographical coordinates,
and the other two are internal ID values from the software used to generate
the shapefiles, replicating the original feature IDs. We can start with the data
set of South Carolina (sc90):

> library(maptools)

> names(sc90)

[1] "AREA" "PERIMETER" "CO45_D90_" "CO45_D90_I" "ST"

[6] "CO" "NAME"

> sc90a <- spChFIDs(sc90, paste(sc90$ST, sc90$CO, sep = ""))

> sc90a <- sc90a[, -(1:4)]

> names(sc90a)

[1] "ST" "CO" "NAME"

5.4.1 Dissolving Polygons

When we try the same sequence of commands for North Carolina, we run into
difficulties:

> names(nc90)

[1] "AREA" "PERIMETER" "CO37_D90_" "CO37_D90_I" "ST"

[6] "CO" "NAME"

> nc90a <- spChFIDs(nc90, paste(nc90$ST, nc90$CO, sep = ""))

Error in spChFIDs(SP, x) : duplicate IDs

Tabulating the frequencies of polygons per unique county ID, we can see that
98 of North Carolina’s counties are represented by single polygons, while one
has two polygons, and one (on the coast) has four.

122 5 Further Methods for Handling Spatial Data

> table(table(paste(nc90$ST, nc90$CO, sep = "")))

1 2 4

98 1 1

One reason for spatial data being structured in this way is that it is following
the OpenGIS®3 Simple Features Specification, which allows polygons to have
one and only one external boundary ring, and an unlimited number of internal
boundaries – holes. This means that multiple external boundaries – such as
a county made up of several islands – are represented as multiple polygons.
In the specification, they are linked to attribute data through a look-up table
pointing to the appropriate attribute data row.

We need to restructure the SpatialPolygons object such that the Polygon

objects belonging to each county belong to the same Polygons object. To
do this, we use a function4 in the maptools package also used for dissolving
or merging polygons, but which can be used here to re-package the original
features, so that each Polygons object corresponds to one and only one county:

> nc90a <- unionSpatialPolygons(nc90, IDs = paste(nc90$ST,

+ nc90$CO, sep = ""))

The function uses the IDs argument to set the ID slots of the output Spa-

tialPolygons object. Having sorted out the polygons, we need to remove the
duplicate rows from the data frame and put the pieces back together again:

> nc90_df <- as(nc90, "data.frame")[!duplicated(nc90$CO),

+ -(1:4)]

> row.names(nc90_df) <- paste(nc90_df$ST, nc90_df$CO, sep = "")

> nc90b <- SpatialPolygonsDataFrame(nc90a, nc90_df)

5.4.2 Checking Hole Status

Looking again at Fig. 5.4, we can see that while neither North Carolina nor
South Carolina has included boroughs within counties, these are frequently
found in Virginia. While data read from external sources are expected to be
structured correctly, with the including polygon having an outer edge and an
inner hole, into which the outer edge of the included borough fits, as described
in Sect. 2.6.2, we can also check and correct the settings of the hole slot in
Polygon objects. The checkPolygonsHoles function takes a Polygons object as
its argument, and, if multiple Polygon objects belong to it, checks them for
hole status using functions from the gpclib package:

> va90a <- spChFIDs(va90, paste(va90$ST, va90$CO, sep = ""))

> va90a <- va90a[, -(1:4)]

3 See http://www.opengeospatial.org/.
4 This function requires that the gpclib package is also installed.

5.5 Combining Spatial Data 123

> va90_pl <- slot(va90a, "polygons")

> va90_pla <- lapply(va90_pl, checkPolygonsHoles)

> p4sva <- CRS(proj4string(va90a))

> vaSP <- SpatialPolygons(va90_pla, proj4string = p4sva)

> va90b <- SpatialPolygonsDataFrame(vaSP, data = as(va90a,

+ "data.frame"))

Here we have changed the Polygons ID values as before, and then processed
each Polygons object in turn for internal consistency, finally re-assembling the
cleaned object. So we now have three spatial objects with mutually unique
IDs, and with data slots containing data frames with the same numbers and
kinds of columns with the same names.

5.5 Combining Spatial Data

It is quite often desirable to combine spatial data of the same kind, in addi-
tion to combining positional data of different kinds as discussed earlier in this
chapter. There are functions rbind and cbind in R for combining objects by
rows or columns, and rbind methods for SpatialPixels and SpatialPixels-

DataFrame objects, as well as a cbind method for SpatialGridDataFrame objects
are included in sp. In addition, methods with slightly different names to carry
out similar operations are included in the maptools package.

5.5.1 Combining Positional Data

The spRbind method combines positional data, such as two SpatialPoints

objects or two SpatialPointsDataFrame objects with matching column names
and types in their data slots. The method is also implemented for SpatialLines
and SpatialPolygons objects and their *DataFrame extensions. The methods do
not check for duplication or overlapping of the spatial objects being combined,
but do reject attempts to combine objects that would have resulted in non-
unique IDs.

Because the methods only take two arguments, combining more than two
involves repeating calls to the method:

> nc_sc_va90 <- spRbind(spRbind(nc90b, sc90a), va90b)

> FIPS <- sapply(slot(nc_sc_va90, "polygons"), function(x) slot(x,

+ "ID"))

> str(FIPS)

chr [1:282] "37001" "37003" ...

> length(slot(nc_sc_va90, "polygons"))

[1] 282

124 5 Further Methods for Handling Spatial Data

5.5.2 Combining Attribute Data

Here, as very often found in practice, we need to combine data for the same
spatial objects from different sources, where one data source includes the
geometries and an identifying index variable, and other data sources include
the same index variable with additional variables. They often include more
observations than our geometries, sometimes have no data for some of our
geometries, and not are infrequently sorted in a different order. The data
cleaning involved in getting ready for analysis is a little more tedious with
spatial data, as we see, but does not differ in principle from steps taken with
non-spatial data.

The text file provided by the US Census tabulating which counties be-
longed to each metropolitan area in 1990 has a header, which has already been
omitted, a footer with formatting information, and many blank columns. We
remove the footer and the blank columns first, and go on to remove rows with
no data – the metropolitan areas are separated in the file by empty lines. The
required rows and column numbers were found by inspecting the file before
reading it into R:

> t1 <- read.fwf("90mfips.txt", skip = 21, widths = c(4,

+ 4, 4, 4, 2, 6, 2, 3, 3, 1, 7, 5, 3, 51), colClasses = "character")

> t2 <- t1[1:2004, c(1, 7, 8, 14)]

> t3 <- t2[complete.cases(t2),]

> cnty1 <- t3[t3$V7 != " ",]

> ma1 <- t3[t3$V7 == " ", c(1, 4)]

> cnty2 <- cnty1[which(!is.na(match(cnty1$V7, c("37", "45",

+ "51")))),]

> cnty2$FIPS <- paste(cnty2$V7, cnty2$V8, sep = "")

We next break out an object with metro IDs, state and county IDs, and county
names (cnty1), and an object with metro IDs and metro names (ma1). From
there, we subset the counties to the three states, and add the FIPS string
for each county, to make it possible to combine the new data concerning
metro area membership to our combined county map. We create an object
(MA_FIPS) of county metro IDs by matching the cnty2 FIPS IDs with those of
the counties on the map, and then retrieving the metro area names from ma1.
These two variables are then made into a data frame, the appropriate row
names inserted and combined with the county map, with method spCbind. At
last we are ready to dissolve the counties belonging to metro areas and to
discard those not belonging to metro areas, using unionSpatialPolygons:

> MA_FIPS <- cnty2$V1[match(FIPS, cnty2$FIPS)]

> MA <- ma1$V14[match(MA_FIPS, ma1$V1)]

> MA_df <- data.frame(MA_FIPS = MA_FIPS, MA = MA, row.names = FIPS)

> nc_sc_va90a <- spCbind(nc_sc_va90, MA_df)

> ncscva_MA <- unionSpatialPolygons(nc_sc_va90a, nc_sc_va90a$MA_FIPS)

5.5 Combining Spatial Data 125

84°W 82°W 80°W 78°W 76°W

32
°N

34
°N

36
°N

38
°N

0405

0480

0600

1300

1440

1520

1540

1760

1950

2560

2655

3120

3160

3290

3605

3660

4640

5720

6640

67606800

8840

9200

Fig. 5.5. The three states with county boundaries plotted in grey, and Metropolitan
area boundaries plotted in black; Metro area standard IDs are shown

Figure 5.5 shows the output object plotted on top of the cleaned input
county boundaries. There does appear to be a problem, however, because one
of the output boundaries has no name – it is located between 6760 and 5720
in eastern Virginia. If we do some more matching, to extract the names of
the metropolitan areas, we can display the name of the area with multiple
polygons:

> np <- sapply(slot(ncscva_MA, "polygons"), function(x) length(slot(x,

+ "Polygons")))

> table(np)

np

1 2

22 1

> MA_fips <- sapply(slot(ncscva_MA, "polygons"), function(x) slot(x,

+ "ID"))

> MA_name <- ma1$V14[match(MA_fips, ma1$V1)]

> data.frame(MA_fips, MA_name)[np > 1,]

MA_fips MA_name

18 5720 Norfolk-Virginia Beach-Newport News, VA MSA

126 5 Further Methods for Handling Spatial Data

The Norfolk-Virginia Beach-Newport News, VA MSA is located on both
sides of Hampton Roads, and the label has been positioned at the centre point
of the largest member polygon.

5.6 Auxiliary Functions

New functions and methods are added to maptools quite frequently, often
following suggestions and discussions on the R-sig-geo mailing list mentioned
in Chap. 1. When positions are represented by geographical coordinates, it
is often useful to be able to find the azimuth between them. The gzAzimuth

function is a simple implementation of standard algorithms for this purpose,
and gives azimuths calculated on the sphere between a matrix of points and a
single point.5 The gcDestination function returns the geographical coordinates
of points at a given distance and bearing from given starting points.

A set of methods for matrices or SpatialPoints objects in geographical
coordinates has been contributed to give timings for sunrise, sunset, and other
solar measures for dates given as POSIXct objects:

> hels <- matrix(c(24.97, 60.17), nrow = 1)

> p4s <- CRS("+proj=longlat +datum=WGS84")

> Hels <- SpatialPoints(hels, proj4string = p4s)

> d041224 <- as.POSIXct("2004-12-24", tz = "EET")

> sunriset(Hels, d041224, direction = "sunrise", POSIXct.out = TRUE)

day_frac time

1 0.3924249 2004-12-24 09:25:05

Finally, elide methods have been provided for translating, rotating, and
disguising coordinate positions in sp vector classes such as SpatialPoints. The
geometries can be shifted in two dimensions, scaled such that the longest di-
mension is scaled [0, 1], flipped, reflected, and rotated, if desired in relation to
the bounding box of a different Spatial object. The methods can be used for
standardising displays, for example in point pattern analysis, or for obfuscat-
ing position to meet in part privacy considerations. Since obscuring position
was a reason for providing the methods, they have been given a suitably ob-
scure name.

The methods discussed in this chapter are intended to provide ways for
manipulating spatial objects to help in structuring analytical approaches to
support problems amongst others. These are not the only ways to organise
spatial data, do try to make it easier to concentrate on exploring and analysing
the data, rather than dealing with the intricacies of particular representations
peculiar to specific software or data providers.

5 The function is based with permission on work by S. Abdali: The Correct Qibla,
http://patriot.net/users/abdali/ftp/qibla.pdf.

6

Customising Spatial Data Classes and Methods

Although the classes defined in the sp package cover many needs, they do not
go far beyond the most typical GIS data models. In applied research, it often
happens that customised classes would suit the actual data coming from the
instruments better. Since S4 classes have mechanisms for inheritance, it may
be attractive to build on the sp classes, so as to utilise their methods where
appropriate. Here, we demonstrate a range of different settings in which sp
classes can be extended. Naturally, this is only useful for researchers with
specific and clear needs, so our goal is to show how (relatively) easy it may
be to prototype classes extending sp classes for specific purposes.

6.1 Programming with Classes and Methods

This section explains the elementary basics of programming with classes and
methods in R. The S language (implemented in R and S-PLUS™) contains two
mechanisms for creating classes and methods: the traditional S3 system and
the more recent S4 system (see Sect. 2.2, in which classes were described for
the useR – here they are described for the developeR). This chapter is not a
full introduction to R programming (see Braun and Murdoch (2007) for more
details), but it will try to give some feel of how the Spatial classes in package
sp can be extended to be used for wider classes of problems. For full details,
the interested reader is referred to, for example, Venables and Ripley (2000)
and Chambers (1998), the latter being a reference for new-style S4 classes and
methods. Example code is, for example, to be found in the source code for
package sp, available from CRAN.

Suppose we define myfun as

> myfun <- function(x) {

+ x + 2

+ }

then, calling it with the numbers 1, 2, and 3 results in

128 6 Customising Spatial Data Classes and Methods

> myfun(1:3)

[1] 3 4 5

or alternatively using a named argument:

> myfun(x = 1:3)

[1] 3 4 5

The return value of the function is the last expression evaluated. Often, we
want to wrap existing functions, such as a plot function:

> plotXplus2Yminus3 <- function(x, y, ...) {

+ plot(x = x + 2, y = y - 3, ...)

+ }

In this case, the ... is used to pass information to the plot function without
explicitly anticipating what it will be: named arguments x and y or the first two
arguments if they are unnamed are processed, remaining arguments are passed
on. The plot function is a generic method, with an instance that depends on
the class of its first (S3) or first n arguments (S4). The available instances of
plot are shown for S3-type methods by

> methods("plot")

[1] plot.acf* plot.data.frame* plot.Date*

[4] plot.decomposed.ts* plot.default plot.dendrogram*

[7] plot.density plot.ecdf plot.factor*

[10] plot.formula* plot.hclust* plot.histogram*

[13] plot.HoltWinters* plot.isoreg* plot.lm

[16] plot.medpolish* plot.mlm plot.POSIXct*

[19] plot.POSIXlt* plot.ppr* plot.prcomp*

[22] plot.princomp* plot.profile.nls* plot.spec

[25] plot.spec.coherency plot.spec.phase plot.stepfun

[28] plot.stl* plot.table* plot.ts

[31] plot.tskernel* plot.TukeyHSD

Non-visible functions are asterisked

and for S4-type methods by

> library(sp)

> showMethods("plot")

Function: plot (package graphics)

x="ANY", y="ANY"

x="SpatialLines", y="missing"

x="Spatial", y="missing"

x="SpatialPoints", y="missing"

x="SpatialPolygons", y="missing"

where we first loaded sp to make sure there are some S4 plot methods to show.

6.1 Programming with Classes and Methods 129

6.1.1 S3-Style Classes and Methods

In Chap. 2, we presented R classes and methods from the perspective of a useR;
here we shift perspective to that of a developeR. Building S3-style classes is
simple. Suppose we want to build an object of class foo:

> x <- rnorm(10)

> class(x) <- "foo"

> x

[1] -1.59553650 -1.17102368 0.80900393 0.63390826 0.01971040

[6] -0.69330839 -1.56896726 -0.22350820 0.20268852 0.96951209

attr(,"class")

[1] "foo"

If we plot this object, for example by plot(x), we get the same plot as when
we would not have set the class to foo. If we know, however, that objects of
class foo need to be plotted without symbols but with connected lines, we can
write a plot method for this class:

> plot.foo <- function(x, y, ...) {

+ plot.default(x, type = "l", ...)

+ }

after which plot(x) will call this particular method, rather than a default plot
method.

Class inheritance is obtained in S3 when an object is given multiple classes,
as in

> class(x) <- c("foo", "bar")

> plot(x)

For this plot, first function plot.foo will be looked for, and if not found the
second option plot.bar will be looked for. If none of them is found, the default
plot.default will be used.

The S3 class mechanism is simple and powerful. Much of R works with it,
including key functions such as lm.

> data(meuse)

> class(meuse)

[1] "data.frame"

> class(lm(log(zinc) ~ sqrt(dist), meuse))

[1] "lm"

There is, however, no checking that a class with a particular name does in-
deed contain the elements that a certain method for it expects. It also has
design flaws, as method specification by dot separation is ambiguous in case
of names such as as.data.frame, where one cannot tell whether it means that
the method as.data acts on objects of class frame, or the method as acts on
objects of class data.frame, or none of them (the answer is: none). For such
reasons, S4-style classes and methods were designed.

130 6 Customising Spatial Data Classes and Methods

6.1.2 S4-Style Classes and Methods

S4-style classes are formally defined using setClass. As an example, somewhat
simplified versions of classes CRS and Spatial in sp are
> setClass("CRS", representation(projargs = "character"))

> setClass("Spatial", representation(bbox = "matrix",

+ proj4string = "CRS"), validity <- function(object) {

+ bb <- bbox(object)

+ if (!is.matrix(bb))

+ return("bbox should be a matrix")

+ n <- dimensions(object)

+ if (n < 2)

+ return("spatial.dimension should be 2 or more")

+ if (any(is.na(bb)))

+ return("bbox should never contain NA values")

+ if (any(!is.finite(bb)))

+ return("bbox should never contain infinite values")

+ if (any(bb[, "max"] < bb[, "min"]))

+ return("invalid bbox: max < min")

+ TRUE

+ })

The command setClass defines a class name as a formal class, gives the names
of the class elements (called slots), and their type–type checking will happen
upon construction of an instance of the class. Further checking, for example
on valid dimensions and data ranges can be done in the validity function.
Here, the validity function retrieves the bounding box using the generic bbox

method. Generics, if not defined in the base R system, for example
> isGeneric("show")

[1] TRUE

can be defined with setGeneric. Defining a specific instance of a generic is
done by setMethod:
> setGeneric("bbox", function(obj) standardGeneric("bbox"))

> setMethod("bbox", signature = "Spatial", function(obj) obj@bbox)

where the signature tells the class of the first (or first n) arguments. Here, the
@ operator is used to access the bbox slot in an S4 object, not to be confused
with the $ operator to access list elements.

We now illustrate this mechanism by providing a few examples of classes,
building on those available in package sp.

6.2 Animal Track Data in Package Trip

CRAN Package trip, written by Michael Sumner (Kirkwood et al., 2006;
Page et al., 2006), provides a class for animal tracking data. Animal tracking
data consist of sets of (x, y, t) stamps, grouped by an identifier pointing
to an individual animal, sensor, or perhaps isolated period of monitoring.
A strategy for this (slightly simplified from that of trip) is to extend the

6.2 Animal Track Data in Package Trip 131

SpatialPointsDataFrame class by a length 2 character vector carrying the
names of the time column and the trip identifier column in the SpatialPoints
DataFrame attribute table.

Package trip does a lot of work to read and analyse tracking data from
data formats typical for tracking data (Argos DAT), removing duplicate ob-
servations and validating the objects, for example checking that time stamps
increase and movement speeds are realistic. We ignore this and stick to the
bare bones.

We now define a class called trip that extends SpatialPointsDataFrame:

> library(sp)

> setClass("trip", representation("SpatialPointsDataFrame",

+ TOR.columns = "character"), validity <- function(object) {

+ if (length(object@TOR.columns) != 2)

+ stop("Time/id column names must be of length 2")

+ if (!all(object@TOR.columns %in% names(object@data)))

+ stop("Time/id columns must be present in attribute table")

+ TRUE

+ })

[1] "trip"

> showClass("trip")

Slots:

Name: TOR.columns data coords.nrs coords bbox

Class: character data.frame numeric matrix matrix

Name: proj4string

Class: CRS

Extends:

Class "SpatialPointsDataFrame", directly

Class "SpatialPoints", by class "SpatialPointsDataFrame", distance 2

Class "Spatial", by class "SpatialPointsDataFrame", distance 3

which checks, upon creation of objects, that indeed two variable names are
passed and that these names refer to variables present in the attribute table.

6.2.1 Generic and Constructor Functions

It would be nice to have a constructor function, just like data.frame or Spa-

tialPoints, and so we now create it and set it as the generic function to be
called in case the first argument is of class SpatialPointsDataFrame.

> trip.default <- function(obj, TORnames) {

+ if (!is(obj, "SpatialPointsDataFrame"))

+ stop("trip only supports SpatialPointsDataFrame")

+ if (is.numeric(TORnames))

132 6 Customising Spatial Data Classes and Methods

+ TORnames <- names(obj)[TORnames]

+ new("trip", obj, TOR.columns = TORnames)

+ }

> if (!isGeneric("trip")) setGeneric("trip", function(obj,

+ TORnames) standardGeneric("trip"))

[1] "trip"

> setMethod("trip", signature(obj = "SpatialPointsDataFrame",

+ TORnames = "ANY"), trip.default)

[1] "trip"

We can now try it out, with the turtle data of Chap. 2:
> turtle <- read.csv("seamap105_mod.csv")

> timestamp <- as.POSIXlt(strptime(as.character(turtle$obs_date),

+ "%m/%d/%Y %H:%M:%S"), "GMT")

> turtle <- data.frame(turtle, timestamp = timestamp)

> turtle$lon <- ifelse(turtle$lon < 0, turtle$lon + 360,

+ turtle$lon)

> turtle <- turtle[order(turtle$timestamp),]

> coordinates(turtle) <- c("lon", "lat")

> proj4string(turtle) <- CRS("+proj=longlat +ellps=WGS84")

> turtle$id <- c(rep(1, 200), rep(2, nrow(coordinates(turtle)) -

+ 200))

> turtle_trip <- trip(turtle, c("timestamp", "id"))

> summary(turtle_trip)

Object of class trip

Coordinates:

min max

lon 140.923 245.763

lat 21.574 39.843

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

Number of points: 394

Data attributes:

id obs_date

Min. :1.000 01/02/1997 04:16:53: 1

1st Qu.:1.000 01/02/1997 05:56:25: 1

Median :1.000 01/04/1997 17:41:54: 1

Mean :1.492 01/05/1997 17:20:07: 1

3rd Qu.:2.000 01/06/1997 04:31:13: 1

Max. :2.000 01/06/1997 06:12:56: 1

(Other) :388

timestamp

Min. :1996-08-11 01:15:00

1st Qu.:1996-10-30 00:10:04

Median :1997-01-24 23:31:01

Mean :1997-01-26 06:24:56

3rd Qu.:1997-04-10 12:26:20

Max. :1997-08-13 20:19:46

6.2 Animal Track Data in Package Trip 133

6.2.2 Methods for Trip Objects

The summary method here is not defined for trip, but is the default sum-
mary inherited from class Spatial. As can be seen, nothing special about the
trip features is mentioned, such as what the time points are and what the
identifiers. We could alter this by writing a class-specific summary method

> summary.trip <- function(object, ...) {

+ cat("Object of class \"trip\"\nTime column: ")

+ print(object@TOR.columns[1])

+ cat("Identifier column: ")

+ print(object@TOR.columns[2])

+ print(summary(as(object, "Spatial")))

+ print(summary(object@data))

+ }

> setMethod("summary", "trip", summary.trip)

[1] "summary"

> summary(turtle_trip)

Object of class "trip"

Time column: [1] "timestamp"

Identifier column: [1] "id"

Object of class Spatial

Coordinates:

min max

lon 140.923 245.763

lat 21.574 39.843

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

id obs_date

Min. :1.000 01/02/1997 04:16:53: 1

1st Qu.:1.000 01/02/1997 05:56:25: 1

Median :1.000 01/04/1997 17:41:54: 1

Mean :1.492 01/05/1997 17:20:07: 1

3rd Qu.:2.000 01/06/1997 04:31:13: 1

Max. :2.000 01/06/1997 06:12:56: 1

(Other) :388

timestamp

Min. :1996-08-11 01:15:00

1st Qu.:1996-10-30 00:10:04

Median :1997-01-24 23:31:01

Mean :1997-01-26 06:24:56

3rd Qu.:1997-04-10 12:26:20

Max. :1997-08-13 20:19:46

As trip extends SpatialPointsDataFrame, subsetting using "[" and column
selection or replacement using "[[" or "$" all work, as these are inherited.
Creating invalid trip objects can be prohibited by adding checks to the validity

134 6 Customising Spatial Data Classes and Methods

function in the class definition, for example will not work because the time
and/or id column are not present any more.

A custom plot method for trip could be written, for example using colour
to denote a change in identifier:

> setGeneric("lines", function(x, ...) standardGeneric("lines"))

[1] "lines"

> setMethod("lines", signature(x = "trip"), function(x,

+ ..., col = NULL) {

+ tor <- x@TOR.columns

+ if (is.null(col)) {

+ l <- length(unique(x[[tor[2]]]))

+ col <- hsv(seq(0, 0.5, length = l))

+ }

+ coords <- coordinates(x)

+ lx <- split(1:nrow(coords), x[[tor[2]]])

+ for (i in 1:length(lx)) lines(coords[lx[[i]],],

+ col = col[i], ...)

+ })

[1] "lines"

Here, the col argument is added to the function header so that a reasonable
default can be overridden, for example for black/white plotting.

6.3 Multi-Point Data: SpatialMultiPoints

One of the feature types of the OpenGeospatial Consortium (OGC) simple
feature specification that has not been implemented in sp is the MultiPoint

object. In a MultiPoint object, each feature refers to a set of points. The
sp classes SpatialPointsDataFrame only provide reference to a single point.
Instead of building a new class up from scratch, we try to re-use code and
build a class SpatialMultiPoint from the SpatialLines class. After all, lines
are just sets of ordered points.

In fact, the SpatialLines class implements the MultiLineString simple fea-
ture, where each feature can refer to multiple lines. A special case is formed
if each feature only has a single line:

> setClass("SpatialMultiPoints", representation("SpatialLines"),

+ validity <- function(object) {

+ if (any(unlist(lapply(object@lines,

+ function(x) length(x@Lines))) !=

+ 1))

+ stop("Only Lines objects with one Line element")

+ TRUE

+ })

6.3 Multi-Point Data: SpatialMultiPoints 135

[1] "SpatialMultiPoints"

> SpatialMultiPoints <- function(object) new("SpatialMultiPoints",

+ object)

As an example, we can create an instance of this class for two MultiPoint
features each having three locations:
> n <- 5

> set.seed(1)

> x1 <- cbind(rnorm(n), rnorm(n, 0, 0.25))

> x2 <- cbind(rnorm(n), rnorm(n, 0, 0.25))

> x3 <- cbind(rnorm(n), rnorm(n, 0, 0.25))

> L1 <- Lines(list(Line(x1)), ID = "mp1")

> L2 <- Lines(list(Line(x2)), ID = "mp2")

> L3 <- Lines(list(Line(x3)), ID = "mp3")

> s <- SpatialLines(list(L1, L2, L3))

> smp <- SpatialMultiPoints(s)

If we now plot object smp, we get the same plot as when we plot s, showing
the two lines. The plot method for a SpatialLines object is not suitable, so
we write a new one:

> plot.SpatialMultiPoints <- function(x, ..., pch = 1:length(x@lines),

+ col = 1, cex = 1) {

+ n <- length(x@lines)

+ if (length(pch) < n)

+ pch <- rep(pch, length.out = n)

+ if (length(col) < n)

+ col <- rep(col, length.out = n)

+ if (length(cex) < n)

+ cex <- rep(cex, length.out = n)

+ plot(as(x, "Spatial"), ...)

+ for (i in 1:n) points(x@lines[[i]]@Lines[[1]]@coords,

+ pch = pch[i], col = col[i], cex = cex[i])

+ }

> setMethod("plot", signature(x = "SpatialMultiPoints",

+ y = "missing"), function(x, y, ...) plot.SpatialMultiPoints(x,

+ ...))

[1] "plot"

Here we chose to pass any named ... arguments to the plot method for a
Spatial object. This function sets up the axes and controls the margins, aspect
ratio, etc. All arguments that need to be passed to points (pch for symbol
type, cex for symbol size, and col for symbol colour) need explicit naming
and sensible defaults, as they are passed explicitly to the consecutive calls to
points. According to the documentation of points, in addition to pch, cex, and
col, the arguments bg and lwd (symbol fill colour and symbol line width) would
need a similar treatment to make this plot method completely transparent
with the base plot method – something an end user would hope for.

136 6 Customising Spatial Data Classes and Methods

Having pch, cex, and col arrays, the length of the number of MultiPoints
sets rather than the number of points to be plotted is useful for two rea-
sons. First, the whole point of MultiPoints object is to distinguish sets of
points. Second, when we extend this class to SpatialMultiPointsDataFrame,
for example by

> cName <- "SpatialMultiPointsDataFrame"

> setClass(cName, representation("SpatialLinesDataFrame"),

+ validity <- function(object) {

+ lst <- lapply(object@lines, function(x) length(x@Lines))

+ if (any(unlist(lst) != 1))

+ stop("Only Lines objects with single Line")

+ TRUE

+ })

[1] "SpatialMultiPointsDataFrame"

> SpatialMultiPointsDataFrame <- function(object) {

+ new("SpatialMultiPointsDataFrame", object)

+ }

then we can pass symbol characteristics by (functions of) columns in the
attribute table:

> df <- data.frame(x1 = 1:3, x2 = c(1, 4, 2), row.names = c("mp1",

+ "mp2", "mp3"))

> smp_df <- SpatialMultiPointsDataFrame(SpatialLinesDataFrame(smp,

+ df))

> setMethod("plot", signature(x = "SpatialMultiPointsDataFrame",

+ y = "missing"), function(x, y, ...) plot.SpatialMultiPoints(x,

+ ...))

[1] "plot"

> grys <- c("grey10", "grey40", "grey80")

> plot(smp_df, col = grys[smp_df[["x1"]]], pch = smp_df[["x2"]],

+ cex = 2, axes = TRUE)

for which the plot is shown in Fig. 6.1.

−2 −1 0 1

−
0.

4
0.

0

Fig. 6.1. Plot of the SpatialMultiPointsDataFrame object

6.4 Hexagonal Grids 137

6.4 Hexagonal Grids

Hexagonal grids are like square grids, where grid points are centres of matching
hexagons, rather than squares. Package sp has no classes for hexagonal grids,
but does have some useful functions for generating and plotting them. This
could be used to build a class. Much of this code in sp is based on postings to
the R-sig-geo mailing list by Tim Keitt, used with permission.

The spatial sampling method spsample has a method for sampling points
on a hexagonal grid:
> data(meuse.grid)

> gridded(meuse.grid) = ~x + y

> xx <- spsample(meuse.grid, type = "hexagonal", cellsize = 200)

> class(xx)

[1] "SpatialPoints"

attr(,"package")

[1] "sp"

gives the points shown in the left side of Fig. 6.2. Note that an alternative
hexagonal representation is obtained by rotating this grid 90◦; we will not
further consider that here.
> HexPts <- spsample(meuse.grid, type = "hexagonal", cellsize = 200)

> spplot(meuse.grid["dist"], sp.layout = list("sp.points",

+ HexPts, col = 1))

> HexPols <- HexPoints2SpatialPolygons(HexPts)

> df <- as.data.frame(meuse.grid)[overlay(meuse.grid, HexPts),

+]

> HexPolsDf <- SpatialPolygonsDataFrame(HexPols, df, match.ID = FALSE)

> spplot(HexPolsDf["dist"])

for which the plots are shown in Fig. 6.2.

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6.2. Hexagonal points (left) and polygons (right)

138 6 Customising Spatial Data Classes and Methods

We can now generate and plot hexagonal grids, but need to deal with two
representations: as points and as polygons, and both representations do not
tell by themselves that they represent a hexagonal grid.

For designing a hexagonal grid class we extend SpatialPoints, assuming
that computation of the polygons can be done when needed without a pro-
hibitive overhead.
> setClass("SpatialHexGrid", representation("SpatialPoints",

+ dx = "numeric"), validity <- function(object) {

+ if (object@dx <= 0)

+ stop("dx should be positive")

+ TRUE

+ })

[1] "SpatialHexGrid"

> setClass("SpatialHexGridDataFrame",

+ representation("SpatialPointsDataFrame",

+ dx = "numeric"), validity <- function(object) {

+ if (object@dx <= 0)

+ stop("dx should be positive")

+ TRUE

+ })

[1] "SpatialHexGridDataFrame"

Note that these class definitions do not check that instances actually do form
valid hexagonal grids; a more robust implementation could provide a test that
distances between points with equal y coordinate are separated by a multiple
of dx, that the y-separations are correct and so on.

It might make sense to adapt the generic spsample method in package sp
to return SpatialHexGrid objects; we can also add plot and spsample methods
for them. Method overlay should work with a SpatialHexGrid as its first ar-
gument, by inheriting from SpatialPoints. Let us first see how to create the
new classes. Without a constructor function we can use
> HexPts <- spsample(meuse.grid, type = "hexagonal", cellsize = 200)

> Hex <- new("SpatialHexGrid", HexPts, dx = 200)

> df <- as.data.frame(meuse.grid)[overlay(meuse.grid, Hex),

+]

> spdf <- SpatialPointsDataFrame(HexPts, df)

> HexDf <- new("SpatialHexGridDataFrame", spdf, dx = 200)

Because of the route taken to define both HexGrid classes, it is not obvious
that the second extends the first. We can tell the S4 system this by setIs:

> is(HexDf, "SpatialHexGrid")

[1] FALSE

> setIs("SpatialHexGridDataFrame", "SpatialHexGrid")

> is(HexDf, "SpatialHexGrid")

6.4 Hexagonal Grids 139

[1] TRUE

to make sure that methods for SpatialHexGrid objects work as well for objects
of class SpatialHexGridDataFrame.

When adding methods, several of them will need conversion to the polygon
representation, so it makes sense to add the conversion function such that, for
example as(x, "SpatialPolygons") will work:
> setAs("SpatialHexGrid", "SpatialPolygons",

+ function(from) HexPoints2SpatialPolygons(from,

+ from@dx))

> setAs("SpatialHexGridDataFrame", "SpatialPolygonsDataFrame",

+ function(from) SpatialPolygonsDataFrame(as(obj,

+ "SpatialPolygons"), obj@data,

+ match.ID = FALSE))

We can now add plot, spplot, spsample, and overlay methods for these
classes:
> setMethod("plot", signature(x = "SpatialHexGrid", y = "missing"),

+ function(x, y, ...) plot(as(x, "SpatialPolygons"),\vspace*{-3pt}

+ ...))

[1] "plot"

> setMethod("spplot", signature(obj = "SpatialHexGridDataFrame"),

+ function(obj, ...) spplot(SpatialPolygonsDataFrame(as(obj,

+ "SpatialPolygons"), obj@data, match.ID = FALSE),

+ ...))

[1] "spplot"

> setMethod("spsample", "SpatialHexGrid", function(x, n,

+ type, ...) spsample(as(x, "SpatialPolygons"), n = n,

+ type = type, ...))

[1] "spsample"

> setMethod("overlay", c("SpatialHexGrid", "SpatialPoints"),

+ function(x, y, ...) overlay(as(x, "SpatialPolygons"),

+ y))

[1] "overlay"

After this, the following will work:
> spplot(meuse.grid["dist"], sp.layout = list("sp.points",

+ Hex, col = 1))

> spplot(HexDf["dist"])

Coercion to a data frame is done by
> as(HexDf, "data.frame")

Another detail not mentioned is that the bounding box of the hexgrid
objects only match the grid centre points, not the hexgrid cells:

140 6 Customising Spatial Data Classes and Methods

> bbox(Hex)

min max

x 178550.0 181450.0

y 329601.5 333585.3

> bbox(as(Hex, "SpatialPolygons"))

min max

r1 178450.0 181550.0

r2 329486.1 333700.7

One solution for this is to correct for this in a constructor function, and check
for it in the validity test. Explicit coercion functions to the points representa-
tion would have to set the bounding box back to the points ranges. Another
solution is to write a bbox method for the hexgrid classes, taking the risk that
someone still looks at the incorrect bbox slot.

6.5 Spatio-Temporal Grids

Spatio-temporal data can be represented in different ways. One simple option
is when observations (or model-results, or predictions) are given on a regular
space–time grid.

Objects of class or extending SpatialPoints, SpatialPixels, and Spa-

tialGrid do not have the constraint that they represent a two-dimensional
space; they may have arbitrary dimension; an example for a three-dimensional
grid is
> n <- 10

> x <- data.frame(expand.grid(x1 = 1:n, x2 = 1:n, x3 = 1:n),

+ z = rnorm(n^3))

> coordinates(x) <- ~x1 + x2 + x3

> gridded(x) <- TRUE

> fullgrid(x) <- TRUE

> summary(x)

Object of class SpatialGridDataFrame

Coordinates:

min max

x1 0.5 10.5

x2 0.5 10.5

x3 0.5 10.5

Is projected: NA

proj4string : [NA]

Number of points: 2

Grid attributes:

cellcentre.offset cellsize cells.dim

x1 1 1 10

x2 1 1 10

6.5 Spatio-Temporal Grids 141

x3 1 1 10

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.00800 -0.70630 -0.03970 -0.02012 0.68930 3.81000

We might assume here that the third dimension, x3, represents time. If we are
happy with time somehow represented by a real number (in double precision),
then we are done. A simple representation is that of decimal year, with, for
example 1980.5 meaning the 183rd day of 1980, or, for example relative time
in seconds after the start of some event.

When we want to use the POSIXct or POSIXlt representations, we need
to do some more work to see the readable version. We now devise a simple
three-dimensional space–time grid with the POSIXct representation.

> setClass("SpatialTimeGrid", "SpatialGrid",

+ validity <- function(object) {

+ stopifnot(dimensions(object) ==

+ 3)

+ TRUE

+ })

[1] "SpatialTimeGrid"

Along the same line, we can extend the SpatialGridDataFrame for space-time:

> setClass("SpatialTimeGridDataFrame", "SpatialGridDataFrame",

+ validity <- function(object) {

+ stopifnot(dimensions(object) == 3)

+ TRUE

+ })

[1] "SpatialTimeGridDataFrame"

> setIs("SpatialTimeGridDataFrame", "SpatialTimeGrid")

> x <- new("SpatialTimeGridDataFrame", x)

A crude summary for this class could be written along these lines:

> summary.SpatialTimeGridDataFrame <- function(object,

+ ...) {

+ cat("Object of class SpatialTimeGridDataFrame\n")

+ x <- gridparameters(object)

+ t0 <- ISOdate(1970, 1, 1, 0, 0, 0)

+ t1 <- t0 + x[3, 1]

+ cat(paste("first time step:", t1, "\n"))

+ t2 <- t0 + x[3, 1] + (x[3, 3] - 1) * x[3, 2]

+ cat(paste("last time step: ", t2, "\n"))

+ cat(paste("time step: ", x[3, 2], "\n"))

+ summary(as(object, "SpatialGridDataFrame"))

+ }

142 6 Customising Spatial Data Classes and Methods

> setMethod("summary", "SpatialTimeGridDataFrame",

+ summary.SpatialTimeGridDataFrame)

[1] "summary"

> summary(x)

Object of class SpatialTimeGridDataFrame

first time step: 1970-01-01 00:00:01

last time step: 1970-01-01 00:00:10

time step: 1

Object of class SpatialGridDataFrame

Coordinates:

min max

x1 0.5 10.5

x2 0.5 10.5

x3 0.5 10.5

Is projected: NA

proj4string : [NA]

Number of points: 2

Grid attributes:

cellcentre.offset cellsize cells.dim

x1 1 1 10

x2 1 1 10

x3 1 1 10

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu.

-3.00800 -0.70630 -0.03970 -0.02012 0.68930

Max.

3.81000

Next, suppose we need a subsetting method that selects on the time. When
the first subset argument is allowed to be a time range, this is done by
> subs.SpatialTimeGridDataFrame <- function(x, i, j, ...,

+ drop = FALSE) {

+ t <- coordinates(x)[, 3] + ISOdate(1970, 1, 1, 0,

+ 0, 0)

+ if (missing(j))

+ j <- TRUE

+ sel <- t %in% i

+ if (!any(sel))

+ stop("selection results in empty set")

+ fullgrid(x) <- FALSE

+ if (length(i) > 1) {

+ x <- x[i = sel, j = j, ...]

+ fullgrid(x) <- TRUE

+ as(x, "SpatialTimeGridDataFrame")

+ }

+ else {

+ gridded(x) <- FALSE

6.5 Spatio-Temporal Grids 143

+ x <- x[i = sel, j = j, ...]

+ cc <- coordinates(x)[, 1:2]

+ p4s <- CRS(proj4string(x))

+ SpatialPixelsDataFrame(cc, x@data, proj4string = p4s)

+ }

+ }

> setMethod("[", c("SpatialTimeGridDataFrame", "POSIXct",

+ "ANY"), subs.SpatialTimeGridDataFrame)

[1] "["

> t1 <- as.POSIXct("1970-01-01 0:00:03", tz = "GMT")

> t2 <- as.POSIXct("1970-01-01 0:00:05", tz = "GMT")

> summary(x[c(t1, t2)])

Object of class SpatialTimeGridDataFrame

first time step: 1970-01-01 00:00:03

last time step: 1970-01-01 00:00:05

time step: 2

Object of class SpatialGridDataFrame

Coordinates:

min max

x1 0.5 10.5

x2 0.5 10.5

x3 2.0 6.0

Is projected: NA

proj4string : [NA]

Number of points: 2

Grid attributes:

cellcentre.offset cellsize cells.dim

x1 1 1 10

x2 1 1 10

x3 3 2 2

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.0080000 -0.6764000 -0.0002298 -0.0081510 0.6546000 3.8100000

> summary(x[t1])

Object of class SpatialPixelsDataFrame

Coordinates:

min max

x1 0.5 10.5

x2 0.5 10.5

Is projected: NA

proj4string : [NA]

Number of points: 100

Grid attributes:

cellcentre.offset cellsize cells.dim

x1 1 1 10

x2 1 1 10

144 6 Customising Spatial Data Classes and Methods

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.8890 -0.4616 0.1353 0.0773 0.7779 2.6490

The reason to only convert back to SpatialTimeGridDataFrame when multiple
time steps are present is that the time step (‘cell size’ in time direction) cannot
be found when there is only a single step. In that case, the current selection
method returns an object of class SpatialPixelsDataFrame for that time slice.

Plotting a set of slices could be done using levelplot or writing another
spplot method:

> spplot.stgdf <- function(obj, zcol = 1, ..., format = NULL) {

+ if (length(zcol) != 1)

+ stop("can only plot a single attribute")

+ if (is.null(format))

+ format <- "%Y-%m-%d %H:%M:%S"

+ cc <- coordinates(obj)

+ df <- unstack(data.frame(obj[[zcol]], cc[, 3]))

+ ns <- as.character(coordinatevalues(getGridTopology(obj))[[3]] +

+ ISOdate(1970, 1, 1, 0, 0, 0), format = format)

+ cc2d <- cc[cc[, 3] == min(cc[, 3]), 1:2]

+ obj <- SpatialPixelsDataFrame(cc2d, df)

+ spplot(obj, names.attr = ns, ...)

+ }

> setMethod("spplot", "SpatialTimeGridDataFrame", spplot.stgdf)

[1] "spplot"

Now, the result of

> library(lattice)

> trellis.par.set(canonical.theme(color = FALSE))

> spplot(x, format = "%H:%M:%S", as.table = TRUE, cuts = 6,

+ col.regions = grey.colors(7, 0.55, 0.95, 2.2))

is shown in Fig. 6.3. The format argument passed controls the way time is
printed; one can refer to the help of

> `?`(as.character.POSIXt)

for more details about the format argument.

6.6 Analysing Spatial Monte Carlo Simulations

Quite often, spatial statistical analysis results in a large number of spatial
realisations of a random field, using some Monte Carlo simulation approach.
Regardless whether individual values refer to points, lines, polygons, or grid
cells, we would like to write some methods or functions that aggregate over
these simulations, to get summary statistics such as the mean value, quantiles,
or cumulative distributions values. Such aggregation can take place in two

6.6 Analysing Spatial Monte Carlo Simulations 145

00:00:01 00:00:02 00:00:03 00:00:04

00:00:05 00:00:06 00:00:07 00:00:08

00:00:09 00:00:10

−3

−2

−1

0

1

2

3

4

Fig. 6.3. spplot for an object of class SpatialTimeGridDataFrame, filled with ran-
dom numbers

ways. Either we aggregate over the probability space and compute summary
statistics for each geographical feature over the set of realisations (i.e. the rows
of the attribute table), or for each realisation we aggregate over the complete
geographical layer or a subset of it (i.e. aggregate over the columns of the
attribute table).

Let us first generate, as an example, a set of 100 conditional Gaussian
simulations for the zinc variable in the meuse data set:
> library(gstat)

> data(meuse)

> coordinates(meuse) <- ~x + y

> v <- vgm(0.5, "Sph", 800, 0.05)

> sim <- krige(log(zinc) ~ 1, meuse, meuse.grid, v, nsim = 100,

+ nmax = 30)

drawing 100 GLS realisations of beta...

[using conditional Gaussian simulation]

> sim@data <- exp(sim@data)

where the last statement back-transforms the simulations from the log scale
to the observation scale. A quantile method for Spatial object attributes can
be written as
> quantile.Spatial <- function(x, ..., byLayer = FALSE) {

+ stopifnot("data" %in% slotNames(x))

+ apply(x@data, ifelse(byLayer, 2, 1), quantile, ...)

+ }

146 6 Customising Spatial Data Classes and Methods

after which we can find the sample below and above 95% confidence limits by

> sim$lower <- quantile.Spatial(sim[1:100], probs = 0.025)

> sim$upper <- quantile.Spatial(sim[1:100], probs = 0.975)

To get the sample distribution of the areal median, we can aggregate over
layers:
> medians <- quantile.Spatial(sim[1:100], probs = 0.5,

+ byLayer = TRUE)

> hist(medians)

It should be noted that in these particular cases, the quantities computed by
simulations could have been obtained faster and exactly by working analyti-
cally with ordinary (block) kriging and the normal distribution (Sect. 8.7.2).

A statistic that cannot be obtained analytically is the sample distribution
of the area fraction that exceeds a threshold. Suppose that 500 is a crucial
threshold, and we want to summarise the sampling distribution of the area
fraction where 500 is exceeded:
> fractionBelow <- function(x, q, byLayer = FALSE) {

+ stopifnot(is(x, "Spatial") || !("data" %in%

+ slotNames(x)))

+ apply(x@data < q, ifelse(byLayer,

+ 2, 1), function(r) sum(r)/length(r))

+ }

> over500 <- 1 - fractionBelow(sim[1:100], 200, byLayer = TRUE)

> summary(over500)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.6007 0.6768 0.6911 0.6897 0.7071 0.7448

> quantile(over500, c(0.025, 0.975))

2.5% 97.5%

0.6460361 0.7336529

For space–time data, we could write methods that aggregate over space,
over time, or over space and time.

6.7 Processing Massive Grids

Up to now we have made the assumption that gridded data can be completely
read and are kept by R in memory. In some cases, however, we need to process
grids that exceed the memory capacity of the computers available. A method
for analysing grids without fully loading them into memory then seems useful.
Note that package rgdal allows for partial reading of grids, for example
> x <- readGDAL("70042108.tif", output.dim = c(120, 132))

> x$band1[x$band1 <= 0] <- NA

> spplot(x, col.regions = bpy.colors())

6.7 Processing Massive Grids 147

reads a downsized grid, where 1% of the grid cells remained. Another option
is reading certain rectangular sections of a grid, starting at some offset.

Yet another approach is to use the low-level opening routines and then
subset:

> library(rgdal)

> x <- GDAL.open("70042108.tif")

> class(x)

[1] "GDALReadOnlyDataset"

attr(,"package")

[1] "rgdal"

> x.subs <- x[1:100, 1:100, 1]

> class(x.subs)

[1] "SpatialGridDataFrame"

attr(,"package")

[1] "sp"

> gridparameters(x.subs)

cellcentre.offset cellsize cells.dim

x 174.20042 0.0008333333 100

y -36.58292 0.0008333333 100

An object of class GDALReadOnlyDataset contains only a file handle. The subset
method "[" for it does not, as it quite often does, return an object of the
same class but actually reads the data requested, with arguments interpreted
as rows, columns, and raster bands, and returns a SpatialGridDataFrame. We
now extend this approach to allow partial writing through "[" as well. As the
actual code is rather lengthy and involves a lot of administration, it will not
all be shown and details can be found in the rgdal source code.

We define two classes,

> setClass("SpatialGDAL", representation("Spatial",

+ grid = "GridTopology", grod = "GDALReadOnlyDataset",

+ name = "character"))

[1] "SpatialGDAL"

> setClass("SpatialGDALWrite", "SpatialGDAL")

[1] "SpatialGDALWrite"

that derive from Spatial, contain a GridTopology, and a file handle in the grod

slot. Next, we can define a function open.SpatialGDAL to open a raster file,
returning a SpatialGDAL object and a function copy.SpatialGDAL that returns
a writable copy of the opened raster. Note that some GDAL drivers allow only
copying, some only writing, and some both.

148 6 Customising Spatial Data Classes and Methods

> x <- open.SpatialGDAL("70042108.tif")

> nrows <- GDALinfo("70042108.tif")["rows"]

> ncols <- GDALinfo("70042108.tif")["columns"]

> xout <- copy.SpatialGDAL(x, "70042108out.tif")

> bls <- 20

> for (i in 1:(nrows/bls - 1)) {

+ r <- 1 + (i - 1) * bls

+ for (j in 1:(ncols/bls - 1)) {

+ c <- 1 + (j - 1) * bls

+ x.in <- x[r:(r + bls), c:(c + bls)]

+ xout[r:(r + bls), c:(c + bls)] <- x.in$band1 +

+ 10

+ }

+ cat(paste("row-block", i, "\n"))

+ }

> close(x)

> close(xout)

This requires the functions "[" and "[<-" to be present. They are set by

> setMethod("[", "SpatialGDAL", function(x, i, j, ...,

+ drop = FALSE) x@grod[i = i, j = j, ...])

> setReplaceMethod("[", "SpatialGDALWrite", function(x,

+ i, j, ..., value) {

+ ...

+ })

where, for the latter, the implementation details are omitted here. It should
be noted that single rows or columns cannot be read this way, as they cannot
be converted sensibly to a grid.

It should be noted that flat binary representations such as the Arc/Info
Binary Grid allow much faster random access than ASCII representations or
compressed formats such as jpeg varieties. Also, certain drivers in the GDAL
library suggest an optimal block size for partial access (e.g. typically a single
row), which is not used here1.

This chapter has sketched developments beyond the base sp classes and
methods used otherwise in this book. Although we think that the base classes
cater for many standard kinds of spatial data analysis, it is clear that specific
research problems will call for specific solutions, and that the R environment
provides the high-level abstractions needed to help busy researchers get their
work done.

1 An attempt to use this block size is, at time of writing, found in the blockApply

code, found in the THK CVS branch of the rgdal project on SourceForge.

Part II

Analysing Spatial Data

Analysing Spatial Data

The analysis of spatial data is usually undertaken to make inferences, that is
to try to draw conclusions about a hypothesised data generating process or to
use an estimated process to predict values at locations for which observations
are unavailable. In some cases, the conclusions are sufficient in themselves,
and in others, they are carried through to other hierarchical layers in the
model under scrutiny. Haining (2003, pp. 184–185) and Bivand (2002, p. 409)
suggest (following Tukey, 1977) that our understanding of the data may be
partitioned into

data = smooth + rough.

If the data are spatial, we can see that there is room for another term, irre-
spective of whether we are more interested in the fit of the model itself or in
calibrating the model in order to predict for new data:

data = smooth + spatial smooth + rough.

The added term constitutes the ‘added value’ of spatial data analysis, bringing
better understanding or predictive accuracy at the price of using specialised
methods for fitting the spatial smooth term. We will here be concerned with
methods for finding out whether fitting this term is worth the effort, and, if
so, how we might choose to go about doing so.

Before rushing off to apply such specialised methods, it is worth thinking
through the research problem thoroughly. We have already mentioned the
importance of the Distributed Statistical Computing conference in Vienna in
2003 for our work. At that meeting, Bill Venables presented a fascinating
study of a real research problem in the management of tiger prawn fisheries.
The variable of interest was the proportion by weight of two species of tiger
prawn in the logbook on a given night at a given location. In a very careful
treatment of the context available, the ‘location’ was not simply taken as a
point in space with geographical coordinates:

152 II. Analysing Spatial Data

‘Rather than use latitude and longitude directly as predictors, we
find it more effective to represent station locations using the following
two predictors:
• The shortest distance from the station to the coast (variable Rland),

and
• The distance from an origin in the west to the nearest point to

the station along an arbitrary curve running nearly parallel to the
coast (variable Rdist).
[. . .] Rather than use Rdist itself as a predictor, we use a natural

spline basis that allows the fitted linear predictor to depend on the
variable in a flexible curvilinear way.

[. . .] Similarly, we choose a natural spline term with four internal
knots at the quantiles of the corresponding variable for the logbook
data for the “distance from dry land” variable, Rland.

The major reason to use this system, which is adapted to the coast-
line, is that interactions between Rland and Rdist are more likely to be
negligible than for latitude and longitude, thus simplifying the model.
The fact that they do not form a true co-ordinate system equivalent
to latitude and longitude is no real disadvantage for the models we
propose.’ Venables and Dichmont (2004, pp. 412–413)

The paper deserves to be required reading in its entirety for all spatial data
analysts, not least because of its sustained focus on the research problem at
hand. It also demonstrates that because applied spatial data analysis builds
on and extends applied data analysis, specifically spatial methods should be
used when the problem cannot be solved with general methods. Consequently,
familiarity with the modelling chapters of textbooks using R for analysis will
be of great help in distinguishing between situations calling for spatial solu-
tions, and those that do not, even though the data are spatial. Readers will
benefit from having one or more of Fox (2002), Dalgaard (2002), Faraway
(2004, 2006), or Venables and Ripley (2002) to refer to in seeking guidance
on making often difficult research decisions.

In introducing this part of the book – covering specialised spatial methods
but touching in places on non-spatial methods – we use the classification
of Cressie (1993) of spatial statistics into three areas, spatial point patterns,
covered here in Chap. 7, geostatistical data in Chap. 8, and lattice data, here
termed areal data, in Chaps. 9–11. In Chap. 1, we mentioned a number of
central books on spatial statistics and spatial data analysis; Table II.1 shows
very roughly which of our chapters contain material that illustrates some
of the methods presented in more recent spatial statistics books, including
treatments of all three areas of spatial statistics discussed earlier (see p. 13).

The coverage here is uneven, because only a limited number of the top-
ics covered in these books could be accommodated; the specialised literature
within the three areas will be referenced directly in the relevant chapters. On
the other hand, the implementations discussed below may be extended to cover

II. Analysing Spatial Data 153

Table II.1. Thematic cross-tabulation of chapters in this book with chapters and
sections of chosen books on spatial statistics and spatial data analysis

Chapter Cressie Schabenberger Waller and Fortin and O’Sullivan and
(1993) and Gotway Gotway Dale (2005) Unwin (2003)

(2005) (2004)

7 8 3 5 2.1–2.2 4–5
8 2–3 4–5 8 3.5 8–9
9–11 6–7 1, 6 6, 7, 9 3.1–3.4, 5 7

alternative methods; for example, the use of WinBUGS with R is introduced
in Chap. 11 in general forms capable of extension. The choice of contributed
packages is also uneven; we have used the packages that we maintain, but this
does not constitute a recommendation of these rather than other approaches
(see Fig. 1.1). Note that coloured versions of figures may be found on the book
website together with complete code examples, data sets, and other support
material.

7

Spatial Point Pattern Analysis

7.1 Introduction

The analysis of point patterns appears in many different areas of research. In
ecology, for example, the interest may be focused on determining the spatial
distribution (and its causes) of a tree species for which the locations have
been obtained within a study area. Furthermore, if two or more species have
been recorded, it may also be of interest to assess whether these species are
equally distributed or competition exists between them. Other factors which
force each species to spread in particular areas of the study region may be
studied as well. In spatial epidemiology, a common problem is to determine
whether the cases of a certain disease are clustered. This can be assessed by
comparing the spatial distribution of the cases to the locations of a set of
controls taken at random from the population.

In this chapter, we describe how the basic steps in the analysis of point
patterns can be carried out using R. When introducing new ideas and concepts
we have tried to follow Diggle (2003) as much as possible because this text
offers a comprehensive description of point processes and applications in many
fields of research. The examples included in this chapter have also been taken
from that book and we have tried to reproduce some of the examples and
figures included there.

In general, a point process is a stochastic process in which we observe the
locations of some events of interest within a bounded region A. Diggle (2003)
defines a point process as a ‘stochastic mechanism which generates a countable
set of events’. Diggle (2003) and Möller and Waagepetersen (2003) give proper
definitions of different types of a point process and their main properties. The
locations of the events generated by a point process in the area of study A
will be called a point pattern. Sometimes, additional covariates may have been
recorded and they will be attached to the locations of the observed events.

Other books covering this subject include Schabenberger and Gotway
(2005, Chap. 3), Waller and Gotway (2004, Chaps. 5 and 6) and O’Sullivan
and Unwin (2003, Chaps. 4 and 5).

156 7 Spatial Point Pattern Analysis

7.2 Packages for the Analysis of Spatial Point Patterns

There are a number of packages for R which implement different functions
for the analysis of spatial point patterns. The spatial package provides func-
tions described in Venables and Ripley (2002, pp. 430–434), and splancs
(Rowlingson and Diggle, 1993) and spatstat (Baddeley and Turner, 2005)
provide other implementations and additional methods for the analysis of dif-
ferent types of point processes. The Spatial Task View contains a complete
list of all the packages available in R for the analysis of point patterns. Other
packages worth mentioning include spatialkernel, which implements different
kernel functions and methods for the analysis of multivariate point processes.
Given that most of the examples included in this chapter have been computed
using splancs and spatstat, we focus particularly on these packages.

These packages use different data structures to store the information of a
point pattern. Given that it would be tedious to rewrite all the code included
in these packages to use sp classes, we need a simple mechanism to convert
between formats. Package maptools offers some functions to convert between
ppp objects representing two-dimensional point patterns (from spatstat, which
uses old-style classes, see p. 24) and sp classes. Note that, in addition to the
point coordinates, ppp objects include the boundary of the region where the
point data have been observed, whilst sp classes do not, and it has to be stored
separately. Data types used in splancs are based on a two-column matrix
for the coordinates of the point pattern plus a similar matrix to store the
boundary; the package was written before old-style classes were introduced.
Function as.points is provided to convert to this type of structure. Hence,
it is very simple to convert the coordinates from sp classes to use functions
included in splancs.

Section 2.4 describes different types of sp classes to work with point data.
They are SpatialPoints, for simple point data, and SpatialPointsDataFrame,
when additional covariates are recorded. More information and examples can
be found in the referred section. Hence, it should not be difficult to have the
data available in the format required for the analysis whatever package is used.

To illustrate the use of some of the different techniques available for the
analysis of point patterns, we have selected some examples from forest ecology,
biology, and spatial epidemiology. The point patterns in Fig. 7.1 show the
spatial distribution of cell centres (left), California redwood trees (right), and
Japanese black pine (middle). All data sets have been re-scaled to fit into
a one-by-one square. These data sets are described in Ripley (1977), Strauss
(1975), Numata (1961) and all of them have been re-analysed in Diggle (2003).

These data sets are available in package spatstat. This package uses ppp

objects to store point patterns, but package maptools provides some functions
to convert between ppp objects and SpatialPoints, as shown in the following
example. First we take the Japanese black pine saplings example, measured
in a square sampling region in a natural forest, reading in the data provided
with spatstat.

7.2 Packages for the Analysis of Spatial Point Patterns 157

x

y

0.0

0.2

0.4

0.6

0.8

1.0

0.0

CELLS JAPANESE REDWOOD

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7.1. Example of three point patterns re-scaled to fit in the unit square. On the
left, spatial distribution of the location of cell centres (Ripley, 1977); in the middle,
Japanese black pine saplings (Numata, 1961); and on the right, saplings of California
redwood trees (Strauss, 1975)

> library(spatstat)

> data(japanesepines)

> summary(japanesepines)

Planar point pattern: 65 points

Average intensity 65 points per square unit (one unit = 5.7 metres)

Window: rectangle = [0, 1] x [0, 1] units

Window area = 1 square unit

Unit of length: 5.7 metres

The summary shows the average intensity in the region of interest; this
region, known as a window, is also reported in the summary; windows are
stored in objects of class owin. In this case, the points have been scaled to
the unit square already, but the size of the sampling square can be used
to retrieve the actual measurements. Note that spatstat windows may be of
several forms, here the window is a rectangle. When we coerce a ppp object
with a rectangular window to a SpatialPoints object, the point coordinates
will by default be re-scaled to their original values.

> library(maptools)

> spjpines <- as(japanesepines, "SpatialPoints")

> summary(spjpines)

Object of class SpatialPoints

Coordinates:

min max

[1,] 0 5.7

[2,] 0 5.7

158 7 Spatial Point Pattern Analysis

Is projected: NA

proj4string : [NA]

Number of points: 65

We can get back to the unit square using the elide methods discussed in
Chap. 5 as the summary of the output object shows.

> spjpines1 <- elide(spjpines, scale = TRUE, unitsq = TRUE)

> summary(spjpines1)

Object of class SpatialPoints

Coordinates:

min max

[1,] 0 1

[2,] 0 1

Is projected: NA

proj4string : [NA]

Number of points: 65

Getting back to a ppp object is also done by coercing, but if we want to
preserve the actual dimensions, we have to manipulate the owin object be-
longing to the ppp object directly. We return later to see how SpatialPolygons

objects may be coerced into owin objects, and how spatstat im objects can
interface with SpatialGrid objects.

> pppjap <- as(spjpines1, "ppp")

> summary(pppjap)

Planar point pattern: 65 points

Average intensity 65 points per square unit

Window: rectangle = [0, 1] x [0, 1] units

Window area = 1 square unit

These point patterns have been obtained by sampling in different regions,
but it is not rare to find examples in which we have different types of events
in the same region. In spatial epidemiology, for example, it is common to have
two types of points: cases of a certain disease and controls, which usually
reflect the spatial distribution of the population. In general, this kind of point
pattern is called a marked point pattern because each point is assigned to a
group and labelled accordingly.

The Asthma data set records the results of a case–control study carried out
in 1992 on the incidence of asthma in children in North Derbyshire (United
Kingdom). This data set has been studied by Diggle and Rowlingson (1994),
Singleton et al. (1995), and Diggle (2003) to explore the relationship between
asthma and the proximity to the main roads and three putative pollution
sources (a coking works, chemical plant, and waste treatment centre). In the
study, a number of relevant covariates were also collected by means of a ques-
tionnaire that was completed by the parents of the children attending 10

7.2 Packages for the Analysis of Spatial Point Patterns 159

schools in the region. Children having suffered from asthma will act as cases
whilst the remainder of the children included in the study will form the set
of controls. Although this data set is introduced here, the spatial analysis of
case–control data is described in the final part of this chapter.

The data set is available from Prof. Peter J. Diggle’s website and comes
in anonymised form. Barry Rowlingson provided some of the road lines. The
original data were supplied by Dr. Joanna Briggs (University of Leeds, UK).
To avoid computational problems in some of the methods described in this
section, we have removed a very isolated point, which was one of the cases,
and we have selected an appropriate boundary region.

The next example shows how to display the point pattern, including the
boundary of the region (that we have created ourselves) and the location
of the pollution sources using different sp layouts and function spplot (see
Chap. 3 for more details). Given that the data set is a marked point pattern,
we have converted it to a SpatialPointsDataFrame to preserve the type (case
or control) of the events and all the other relevant information. In addition,
we have created a SpatialPolygons object to store the boundary of the region
and a SpatialPointsDataFrame object for the location of the three pollution
sources. Given that the main roads are available, we have included them as
well using a SpatialLines object. The final plot is shown in Fig. 7.2.
> library(rgdal)

> spasthma <- readOGR(".", "spasthma")

> spbdry <- readOGR(".", "spbdry")

> spsrc <- readOGR(".", "spsrc")

> sproads <- readOGR(".", "sproads")

0.
0

0.
2

0.
4

0.
6

0.
8

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fig. 7.2. Locations of the residence of asthmatic (cases, filled triangle) and non-
asthmatic (controls, cross) in North Derbyshire, 1992 (Diggle and Rowlingson, 1994).
The boundary has been taken to contain all points in the data set. The map shows
the pollution sources (grey filled square) and the main roads (dashed lines)

160 7 Spatial Point Pattern Analysis

7.3 Preliminary Analysis of a Point Pattern

The analysis of point patterns is focused on the spatial distribution of the ob-
served events and making inference about the underlying process that gener-
ated them. In particular, there are two main issues of interest: the distribution
of events in space and the existence of possible interactions between them. For
a merely descriptive analysis, we would represent the locations of the point
pattern in the study area. This will give us an idea of the distribution of the
points, and it can lead to possible hypothesis about the spatial distribution
of the events. Further statistical analyses can be done and they are described
in this section.

7.3.1 Complete Spatial Randomness

When studying a point process, the most basic test that can be performed
is that of Complete Spatial Randomness (CSR, henceforth). Intuitively, by
CSR we mean that the events are distributed independently at random and
uniformly over the study area. This implies that there are no regions where
the events are more (or less) likely to occur and that the presence of a given
event does not modify the probability of other events appearing nearby.

Informally, this can be tested by plotting the point pattern and observing
whether the points tend to appear in clusters or, on the contrary, they follow a
regular pattern. In any of these cases, the points are not distributed uniformly
because they should be distributed filling all the space in the study area.
Usually, clustered patterns occur when there is attraction (i.e. ‘contagion’)
between points, whilst regular patterns occur when there is inhibition (i.e.
‘competition’) among points.

Figure 7.1 shows three examples of point patterns that have been gen-
erated by different biological mechanisms and seem to have different spatial
distributions. In particular, plot 7.1 of the Japanese pine trees (middle) seems
neither clustered nor regularly distributed, whilst the redwood seeds (right)
show a clustered pattern and the cells (left) a regular one. Hence, only the
spatial distribution of Japanese pine trees seems to be compatible with CSR.

To measure the degree of accomplishment of the CSR, several functions
can be computed on the data. These are described in the following sections,
together with methods to measure the uncertainty related to the observed
pattern.

Testing for CSR is covered in Waller and Gotway (2004, pp. 118–126),
O’Sullivan and Unwin (2003, pp. 88–92, including a discussion on pp. 108–112),
and Schabenberger and Gotway (2005, pp. 86–99, including other methods not
presented here).

7.3 Preliminary Analysis of a Point Pattern 161

7.3.2 G Function: Distance to the Nearest Event

The G function measures the distribution of the distances from an arbitrary
event to its nearest event. If these distances are defined as di= minj{dij ,∀j �=i},
i = 1, . . . , n, then the G function can be estimated as

Ĝ(r) =
#{di : di ≤ r,∀i}

n
,

where the numerator is the number of elements in the set of distances that
are lower than or equal to d and n is the total number of points. Under CSR,
the value of the G function is

G(r) = 1 − exp{−λπr2},
where λ represents the mean number of events per unit area (or intensity).

The compatibility with CSR of the point pattern can be assessed by plot-
ting the empirical function Ĝ(d) against the theoretical expectation. In addi-
tion, point-wise envelopes under CSR can be computed by repeatedly simu-
lating a CSR point process with the same estimated intensity λ̂ in the study
region (Diggle, 2003, p. 13) and check whether the empirical function is con-
tained inside. The next chunk of code shows how to compute this by using
spatstat functions Gest and envelope. The results have been merged in a data
frame in order to use conditional Lattice graphics.

> r <- seq(0, sqrt(2)/6, by = 0.005)

> envjap <- envelope(as(spjpines1, "ppp"), fun = Gest,

+ r = r, nrank = 2, nsim = 99)

> envred <- envelope(as(spred, "ppp"), fun = Gest, r = r,

+ nrank = 2, nsim = 99)

> envcells <- envelope(as(spcells, "ppp"), fun = Gest,

+ r = r, nrank = 2, nsim = 99)

> Gresults <- rbind(envjap, envred, envcells)

> Gresults <- cbind(Gresults, DATASET = rep(c("JAPANESE",

+ "REDWOOD", "CELLS"), each = length(r)))

Figure 7.3 shows the empirical function Ĝ(r) against G(r) together with
the 96% pointwise envelopes (because nrank=2) of the same point pattern
examined using the G function. The plot is produced by taking the pairs
(G(r), Ĝ(r)) for a set of reasonable values of the distance r, so that in the x-
axis we have the values of the theoretical value of G(r) under CSR and in the
y-axis the empirical function Ĝ(r). The results show that only the Japanese
trees seem to be homogeneously distributed, whilst the redwood seeds show
a clustered pattern (values of Ĝ(r) above the envelopes) and the location of
the cells shows a more regular pattern (values of Ĝ(r) below the envelopes).

envelope is a very flexible function that can be used to compute Monte
Carlo envelopes of a certain type of functions. Basically, it works by randomly
simulating a number of point patterns so that the summary function is com-
puted for all of them. The resulting values are then used to compute point-wise

162 7 Spatial Point Pattern Analysis

theo

ob
s

0.0

0.2

0.4

0.6

0.8

1.0

0.0

CELLS JAPANESE REDWOOD

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7.3. Envelopes and observed values of the G function for three point patterns

(i.e. at different distances) or global Monte Carlo envelopes. envelope can be
passed the way the point patterns are generated (by default, CSR). The reader
is referred to the manual page for more information.

7.3.3 F Function: Distance from a Point to the Nearest Event

The F function measures the distribution of all distances from an arbitrary
point of the plane to its nearest event. This function is often called the empty
space function because it is a measure of the average space left between events.
Under CSR, the expected value of the F function is

F (r) = 1 − exp{−λπr2}.

Hence, we can compare the estimated value of the F function to its theo-
retical value and compute simulation envelopes as before.

> Fenvjap <- envelope(as(spjpines1, "ppp"), fun = Fest,

+ r = r, nrank = 2, nsim = 99)

> Fenvred <- envelope(as(spred, "ppp"), fun = Fest, r = r,

+ nrank = 2, nsim = 99)

> Fenvcells <- envelope(as(spcells, "ppp"), fun = Fest,

+ r = r, nrank = 2, nsim = 99)

> Fresults <- rbind(Fenvjap, Fenvred, Fenvcells)

> Fresults <- cbind(Fresults, DATASET = rep(c("JAPANESE",

+ "REDWOOD", "CELLS"), each = length(r)))

Figure 7.4 shows the empirical F functions and their associated 96%
envelopes (because nrank=2) for the three data sets presented before. The
Japanese data are compatible with the CSR hypothesis, whereas the cells
point pattern shows a regular pattern (F̂ (r) is above the envelopes) and the
redwood points seem to be clustered, given the low values of F̂ (r).

7.4 Statistical Analysis of Spatial Point Processes 163

theo

ob
s

0.0

0.2

0.4

0.6

0.8

1.0
CELLS JAPANESE REDWOOD

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7.4. Envelopes and observed values of the F function for three point patterns

7.4 Statistical Analysis of Spatial Point Processes

A first description of the point pattern can be done by estimating the spatial
statistical density from the observed data. The spatial density has the same
properties as a univariate density, but its domain is the study area where the
point process takes place.

As an alternative function to measure the spatial distribution of the events,
we can work with the intensity λ(x) of the point process, which is proportional
to its spatial density. The constant of proportionality is the expected number
of events of the point process in the area A. That is, for two point processes
with the same spatial density but different intensities, the number of events
observed will be higher for the process with the highest intensity.

The intensity and spatial density are part of the first-order properties
because they measure the distribution of events in the study region. Note
that neither the intensity nor the spatial density give any information on
the interaction between two arbitrary points. This is measured by second-
order properties, which reflect any tendency of the events to appear clustered,
independently, or regularly spaced.

First- and second-order properties are properly defined in, for example,
Diggle (2003, p. 43) and Möller and Waagepetersen (2003, Chap. 4). We focus
on the estimation of the intensity and the assessment of clustering, as ex-
plained in the following sections. Waller and Gotway (2004, pp. 130–146) and
Schabenberger and Gotway (2005, 90–103, 110–112) discuss the estimation of
the intensity of a point pattern and the assessment of clustering as well.

The separation between first- and second-order properties can be difficult
to disentangle without further assumptions. For example, do groups of events
appear at a specific location because the intensity is higher there or because
events are clustered? In general, it is assumed that interaction between points
occurs at small scale, while large-scale variation is reflected on the intensity

164 7 Spatial Point Pattern Analysis

(Diggle, 2003, p. 143). Waller and Gotway (2004, 146–147) also discuss the
roles of first and second-order properties.

In the remainder of this chapter, we focus on Poisson processes because
they offer a simple approach to a wide range of problems. Loosely, we can
distinguish between homogeneous and inhomogeneous Poisson point processes
(HPP and IPP, respectively). Both HPP and IPP assume that the events
occur independently and are distributed according to a given intensity. The
main difference between the two point processes is that the HPP assumes
that the intensity function is constant, while the intensity of an IPP varies
spatially. In a sense, the IPP is a generalisation of the HPP or, inversely, the
HPP can be regarded as an IPP with constant intensity. Poisson processes are
also described in Schabenberger and Gotway (2005, pp. 81–86, 107–110) and
Waller and Gotway (2004, pp. 126–130).

Note that other spatial processes may be required when more complex
data sets are to be analysed. For example, when events are clustered, points do
not occur independently of each other and a clustered process would be more
appropriate. See Diggle (2003, Chap. 5) and Möller and Waagepetersen (2003)
for a wider description of other spatial point processes. spatstat provides a
number of functions to fit some of the models described therein.

7.4.1 Homogeneous Poisson Processes

A homogeneous Poisson process is characterised as representing the kind of
point process in which all events are independently and uniformly distributed
in the region A where the point process occurs. This means that the location
of one point does not affect the probabilities of other points appearing nearby
and that there are no regions where events are more likely to appear.

More formally, Diggle (2003) describes an HPP in a region A as fulfilling:

1. The number of events in A, with area |A|, is Poisson distributed with
mean λ|A|, where λ is the constant intensity of the point process.

2. Given n observed events in region A, they are uniformly distributed in A.

The HPP is also stationary and isotropic. It is stationary because the in-
tensity is constant and the second-order intensity depends only on the relative
positions of two points (i.e. direction and distance). In addition, it is isotropic
because the second-order intensity is invariant to rotation. Hence, the point
process has constant intensity and its second-order intensity depends only on
the distance between the two points, regardless of the relative positions of the
points.

These constraints reflect that the intensity of the point process is constant,
that is λ(x) = λ > 0,∀x ∈ A, and that events appear independently of each
other. Hence, the HPP is the formal definition of a point process which is
CSR.

7.4 Statistical Analysis of Spatial Point Processes 165

7.4.2 Inhomogeneous Poisson Processes

In most cases assuming that a point process under study is homogeneous
is not realistic. Clear examples are the distribution of the population in a
city or the location of trees in a forest. In both cases, different factors affect
the spatial distribution. In the case of the population, it can be the type of
housing, neighbourhood, etc., whilst in the case of the trees, it can be the
environmental factors such as humidity, quality of the soil, slope and others.

The IPP is a generalisation of the HPP, which allows for a non-constant
intensity. The same principle of independence between events holds, but now
the spatial variation can be more diverse, with events appearing more likely
in some areas than others. As a result, the intensity will be a generic function
λ(x) that varies spatially.

7.4.3 Estimation of the Intensity

As stated previously, the intensity of an HPP point process is constant. Hence,
the problem of estimating the intensity is the problem of estimating a constant
function λ such as the expected number of events in region A (

∫
A

λ dx) is equal
to the observed number of cases. This is the volume under the surface defined
by the intensity in region A. Once we have observed the (homogeneous) point
process, we have the locations of a set of n points. So, an unbiased estimator
of the intensity is n/|A|, where |A| is the area of region A. This ensures that
the expected number of points is, in fact, the observed number of points.

For IPP, the estimation of the intensity can be done in different ways. It can
be done non-parametrically by means of kernel smoothing or parametrically by
proposing a specific function for the intensity whose parameters are estimated
by maximising the likelihood of the point process. If we have observed n points
{xi}n

i=1, the form of a kernel smoothing estimator is the following (Diggle,
1985; Berman and Diggle, 1989):

λ̂(x) =
1
h2

n∑
i=1

κ
(||x − xi||

h

)
/q(||x||), (7.1)

where κ(u) is a bivariate and symmetrical kernel function. q(||x||) is a border
correction to compensate for the missing observations that occur when x is
close to the border of the region A. Bandwidth h measures the level of smooth-
ing. Small values will produce very peaky estimates, whilst large values will
produce very smooth functions.

Silverman (1986) gives a detailed description of different kernel functions
and their properties. In the examples included in this chapter, we have used the
quartic kernel (also known as biweight), whose expression in two dimensions is

κ(u) =
{

3
π (1 − ‖u‖2)2 if u ∈ (−1, 1)

0 Otherwise ,

166 7 Spatial Point Pattern Analysis

0.0 0.5 1.0

0
4

8
12

N = 10 Bandwidth = 0.1

In
te

ns
ity

Fig. 7.5. Example of the contribution of the different points to the estimate of the
intensity. Dashed lines represent the kernel around each observation, whilst the solid
line is the estimate of the intensity

where ‖u‖2 denotes the squared norm of point u = (u1, u2) equal to u2
1 + u2

2.
Figure 7.5 shows an example of estimation of the intensity by kernel smooth-
ing in a one-dimensional setting, but the same ideas are used in a spatial
framework.

Methods for the selection of the bandwidth of kernel smoothers in a general
setting are given by Silverman (1986). In the context of spatial analysis, a few
proposals have been made so far, but it is not clear how to choose an optimal
value for the bandwidth in the general case. It seems reasonable to use several
values depending on the process under consideration, and choose a value that
seems plausible.

Diggle (1985) and Berman and Diggle (1989) propose a criterion based on
minimising the Mean Square Error (MSE) of the kernel smoothing estimator
when the underlying point process in a stationary Cox process (see, e.g. p. 68 of
Diggle (2003) for details). However, it can still be used as a general exploratory
method and a guidance in order to choose the bandwidth. Kelsall and Diggle
(1995a,b, 1998) propose and compare different methods for the selection of
the bandwidth when a case–control point pattern is used. Clark and Lawson
(2004) have compared these and other methods for disease mapping, including
some methods for the automatic selection of the bandwidth.

We have applied the approach proposed by Berman and Diggle (1989),
which is implemented in function mse2d to the redwood data set.

> library(splancs)

> mserw <- mse2d(as.points(coordinates(spred)), as.points(list(x = c(0,

+ 1, 1, 0), y = c(0, 0, 1, 1))), 100, 0.15)

> bw <- mserw$h[which.min(mserw$mse)]

Figure 7.6 shows different values of the bandwidth and their associated
values of the MSE. The value that minimises it is 0.039, but it should be
noted that the curve is very flat around that point, which means that many
other values of the bandwidth are plausible. This is a common problem in the
analysis of real data sets.

7.4 Statistical Analysis of Spatial Point Processes 167

0.00 0.05 0.10 0.15

0
10

30
50

Bandwidth

M
S

E

Fig. 7.6. Values of the mean square error for several values of the bandwidth using
the redwood data set. The value that minimises it is 0.039 but many other values
seem plausible, given the flatness of the curve

Quartic bw=0.039 Quartic bw=0.05 Quartic bw=0.1 Quartic bw=0.15

Gaussian bw=0.0195 Gaussian bw=0.025 Gaussian bw=0.05 Gaussian bw=0.075

0

500

1000

1500

2000

Fig. 7.7. Different estimates of the intensity of the redwood data set using a quartic
kernel and different values of the bandwidth

It must be noted that when estimating the intensity by kernel smoothing,
the key choice is not that of the kernel function but the bandwidth. Different
kernels will produce very similar estimates for equivalent bandwidths, but
the same kernel with different bandwidths will produce dramatically different
results. An example of this fact is shown in Fig. 7.7, where four different
bandwidths have been used to estimate the intensity of the redwood data.

> poly <- as.points(list(x = c(0, 0, 1, 1), y = c(0, 1,

+ 1, 0)))

> sG <- Sobj_SpatialGrid(spred, maxDim = 100)$SG

> grd <- slot(sG, "grid")

> summary(grd)

> k0 <- spkernel2d(spred, poly, h0 = bw, grd)

> k1 <- spkernel2d(spred, poly, h0 = 0.05, grd)

> k2 <- spkernel2d(spred, poly, h0 = 0.1, grd)

168 7 Spatial Point Pattern Analysis

> k3 <- spkernel2d(spred, poly, h0 = 0.15, grd)

> df <- data.frame(k0 = k0, k1 = k1, k2 = k2, k3 = k3)

> kernels <- SpatialGridDataFrame(grd, data = df)

> summary(kernels)

Package spatstat provides similar functions to estimate the intensity by
kernel smoothing using an isotropic Gaussian kernel. We have empirically ad-
justed the value of the bandwidth to make the kernel estimates comparable.
See Härdle et al. (2004, Sect. 3.4.2) for a full discussion. When calling density

on a ppp object (which in fact calls density.ppp), we have used the additional
arguments dimxy and xy to make sure that the grid used to compute the esti-
mates is compatible with that stored in kernels. Finally, the kernel estimate
is returned in an im class that is converted into a SpatialGridDataFrame and
the values incorporated into kernels.

> xy <- list(x = coordinates(kernels)[, 1], y = coordinates(kernels)[,

+ 2])

> k4 <- density(as(spred, "ppp"), 0.5 * bw, dimyx = c(100,

+ 100), xy = xy)

> kernels$k4 <- as(k4, "SpatialGridDataFrame")$v

> k5 <- density(as(spred, "ppp"), 0.5 * 0.05, dimyx = c(100,

+ 100), xy = xy)

> kernels$k5 <- as(k5, "SpatialGridDataFrame")$v

> k6 <- density(as(spred, "ppp"), 0.5 * 0.1, dimyx = c(100,

+ 100), xy = xy)

> kernels$k6 <- as(k6, "SpatialGridDataFrame")$v

> k7 <- density(as(spred, "ppp"), 0.5 * 0.15, dimyx = c(100,

+ 100), xy = xy)

> kernels$k7 <- as(k7, "SpatialGridDataFrame")$v

> summary(kernels)

7.4.4 Likelihood of an Inhomogeneous Poisson Process

The previous procedure to estimate the intensity is essentially non-parametric.
Alternatively, a specific parametric or semi-parametric form for the intensity
may be of interest (e.g. to include available covariates). Standard statistical
techniques, such as the maximisation of the likelihood, can be used to estimate
the parameters that appear in the expression of the intensity.

The expression of the likelihood can be difficult to work out for many point
processes. However, in the case of the IPP (and, hence, the HPP) it has a very
simple expression. The log-likelihood of a realisation of n independent events
of an IPP with intensity λ(x) is (Diggle, 2003, p. 104)

L(λ) =
n∑

i=1

log λ(xi) −
∫

A

λ(x) dx,

where
∫

A
λ(x) dx is the expected number of cases of the IPP with intensity

λ(x) in region A.

7.4 Statistical Analysis of Spatial Point Processes 169

When the intensity of the point process is estimated parametrically, the
likelihood can be maximised to obtain the estimates of the parameters of the
model. Diggle (2003, p. 104) suggests a log-linear model

log λ(x) =
p∑

j=1

βjzj(x)

using covariates zj(x), j = 1, . . . , p measured at a location x. These models
can be fit using standard numerical integration techniques.

The following example defines the log-intensity (loglambda) at a given point
x = (x1, x2) using the parametric specification given by

log λ(x) = α + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1 ∗ x2. (7.2)

This expression is in turn used to construct the likelihood of an IPP (L).
Function adapt (from the package with the same name) is used to compute
numerically the integral that appears in the expression of the likelihood.

> loglambda <- function(x, alpha, beta) {

+ l <- alpha + sum(beta * c(x, x * x, prod(x)))

+ return(l)

+ }

> L <- function(alphabeta, x) {

+ l <- apply(x, 1, loglambda, alpha = alphabeta[1],

+ beta = alphabeta[-1])

+ l <- sum(l)

+ intL <- adapt(2, c(0, 0), c(1, 1), functn = function(x,

+ alpha, beta) {

+ exp(loglambda(x, alpha, beta))

+ }, alpha = alphabeta[1], beta = alphabeta[-1])

+ l <- l - intL$value

+ return(l)

+ }

The following example uses the locations of maple trees from the Lansing
Woods data set (Gerard, 1969) in order to show how to fit a parametric inten-
sity using (7.2). The parameters are estimated by maximising the likelihood
using function optim.

> library(adapt)

> data(lansing)

> x <- as.points(lansing[lansing$marks == "maple",])

> optbeta <- optim(par = c(log(514), 0, 0, 0, 0, 0), fn = L,

+ control = list(maxit = 1000, fnscale = -1), x = x)

The values of the coefficients α, β1, . . . , β5 are 5.53, 5.64, –0.774, –5.01,
–1.2, 0.645, for a value of the (maximised) likelihood of 2778.4. Figure 7.8
shows the location of the maple trees and the estimated intensity according

170 7 Spatial Point Pattern Analysis

0

200

400

600

800

1000

1200

1400

Fig. 7.8. Location of maple trees from the Lansing data set and their estimated
parametric intensity using model (7.2)

to parametric model in (7.2). See Diggle (2003, Chap. 7) for a similar analysis
using all the tree species in the Lansing Woods data set.

The same example can be run using function ppm from spatstat as follows
(x and y representing the coordinates of the point pattern):

> lmaple <- lansing[lansing$marks == "maple",]

> ppm(Q = lmaple, trend = ~x + y + I(x^2) + I(y^2) + I(x *

+ y))

Nonstationary multitype Poisson process

Possible marks:

blackoak hickory maple misc redoak whiteoak

Trend formula: ~x + y + I(x^2) + I(y^2) + I(x * y)

Fitted coefficients for trend formula:

(Intercept) x y I(x^2) I(y^2)

3.7310742 5.6400643 -0.7663636 -5.0115142 -1.1983209

I(x * y)

0.6375824

As the authors mention in the manual page, ppm can be compared to glm

because it can be used to fit a specific type of point process model to a
particular point pattern. In this case, the family argument used in glm to

7.4 Statistical Analysis of Spatial Point Processes 171

define the model is substituted by interaction, which defines the point process
to be fit. By default, a Poisson point process is used, but many other point
processes can be fitted (see manual page for details).

7.4.5 Second-Order Properties

Second-order properties measure the strength and type of the interactions
between events of the point process. Hence, they are particularly interesting
if we are keen on studying clustering or competition between events.

Informally, the second-order intensity of two points x and y reflects the
probability of any pair of events occurring in the vicinities of x and y, respec-
tively. Diggle (2003, p. 43) and Möller and Waagepetersen (2003, Chap. 4)
give a more formal description of the second-order intensity. Schabenberger
and Gotway (2005, pp. 99–103) and Waller and Gotway (2004, pp. 137–147)
also discuss second-order properties and the role of the K-function.

An alternative way of measuring second-order properties when the spa-
tial process is HPP is by means of the K-function (Ripley, 1976, 1977). The
K-function measures the number of events found up to a given distance of
any particular event and it is defined as

K(s) = λ−1E[N0(s)],

where E[.] denotes the expectation and N0(s) represents the number of further
events up to a distance s around an arbitrary event. To compute this function,
Ripley (1976) also proposed an unbiased estimate equal to

K̂(s) = (n(n − 1))−1|A|
n∑

i=1

∑
j �=i

w−1
ij |{xj : d(xi, xj) ≤ s}|, (7.3)

where wij are weights equal to the proportion of the area inside the region A
of the circle centred at xi and radius d(xi, xj), the distance between xi and xj .

The value of the K-function for an HPP is K(s) = πs2. By comparing
the estimated value K̂(s) to the theoretical value we can assess what kind of
interaction exists. Usually, we assume that these interactions occur at small
scales, and so will be interested in relatively small values of s. Values of K̂(s)
higher than πs2 are characteristic of clustered processes, whilst values smaller
than that are found when there exists competition between events (regular
pattern).

> Kenvjap <- envelope(as(spjpines1, "ppp"), fun = Kest,

+ r = r, nrank = 2, nsim = 99)

> Kenvred <- envelope(as(spred, "ppp"), fun = Kest, r = r,

+ nrank = 2, nsim = 99)

> Kenvcells <- envelope(as(spcells, "ppp"), fun = Kest,

+ r = r, nrank = 2, nsim = 99)

> Kresults <- rbind(Kenvjap, Kenvred, Kenvcells)

172 7 Spatial Point Pattern Analysis

r

K
(r

)−
πr

2

−0.04

−0.02

0.00

0.02

0.04

CELLS JAPANESE REDWOOD

^

0.00 0.10 0.20

0.00 0.10 0.20

0.00 0.10 0.20

Fig. 7.9. Envelopes and observed values of Ripley’s K-function for three point
patterns

> Kresults <- cbind(Kresults, DATASET = rep(c("JAPANESE",

+ "REDWOOD", "CELLS"), each = length(r)))

Figure 7.9 shows the estimated K-function minus the theoretical value un-
der CSR of the three point patterns that we have considered before. Note that
the biological interpretations must be made cautiously because the underlying
mechanisms are quite different and the scale of the interactions (if any) will
probably be different for each point pattern. This is reflected in two ways: the
width of the envelopes, which reflects the variability of the process under the
null hypothesis of CSR, and the scale of the interaction. This seems to exist
only for the cells, which follow a regular pattern, and the redwood seeds, which
seem to be clustered. The Japanese trees point pattern is compatible with
CSR because the estimated K-function is contained within the envelopes.

Inhomogeneous K-Function

Baddeley et al. (2000) propose a version of the K-function for non-homogeneous
point processes, in particular, for the class of point processes which are second-
order reweighted-stationary, which includes IPPs. This means that the second-
order intensity of twopoints, dividedby their respective intensities, is stationary.
The inhomogeneous K-function is used in Sect. 7.5.5 in the analysis of
case–control point patterns.

7.5 Some Applications in Spatial Epidemiology

In this section we focus on different applications of the analysis of point
patterns in Spatial Epidemiology. Gatrell et al. (1996) and Diggle (2003) de-
scribe most of the methods contained here, but a comprehensive description
of spatial methods for the analysis of epidemiological data can be found in

7.5 Some Applications in Spatial Epidemiology 173

Elliott et al. (2000) and Waller and Gotway (2004). Furthermore, Chap. 11
describes the analysis of epidemiological data when they are aggregated.

The distribution of the cases of a certain disease can be regarded as the
realisation of a point process, which reflects the underlying distribution of the
population (which usually is not homogeneous) plus any other risk factors
related to the disease and that are likely to depend on the subjects. Hence,
we need to have accurate records of the locations of the disease cases, which
can also include additional information on the individuals such as age, gender,
and others.

In a spatial setting, the primary interest is on the spatial distribution of
the cases, but any underlying risk factor that affects this spatial distribution
should be taken into account. It is clear that looking solely at the spatial
distribution of the cases in order to detect areas of high incidence is useless
because the distribution of the cases will reflect that of the population. To
overcome this problem, it would be necessary to have an estimate of the
spatial distribution of the population so that it can be compared to that of
the cases. For this reason, a set of controls can be randomly selected from
the population at risk so that its spatial variation can be estimated (see, e.g.
Prince et al., 2001).

Different authors have approached this problem in different ways. Diggle
and Chetwynd (1991), for example compute the difference of the homoge-
neous K-function of cases and controls. Kelsall and Diggle (1995a,b) use non-
parametric estimates of the distribution of the ratio between the intensities of
cases and controls (i.e. the relative risk). Kelsall and Diggle (1998) propose a
similar model and the use of binary regression and additive models to account
for covariates and a smoothing term to model the residual spatial variation.
More recently, Diggle et al. (2007) use the inhomogeneous K-function to com-
pare the spatial distribution of cases and controls after accounting for the
effect of relevant covariates.

Many of these methods are also covered, including new examples, and
discussed in Schabenberger and Gotway (2005, pp. 103–122), Waller and
Gotway (2004, Chap. 6) and O’Sullivan and Unwin (2003, see the discussion
in Chap. 5).

7.5.1 Case–Control Studies

As we need to estimate the spatial distribution of the population, a number
of individuals can be taken at random to make a set of controls. Controls are
often selected using the population register or, if it is not available, the events
of another non-related disease (Diggle, 1990). Furthermore, some strategies,
such as stratification and matching (Jarner et al., 2002), can be done in order
to account for other sources of confounding, such as age and sex. As discussed
by Diggle (2000) when matching is used in the selection of the controls, the
hypothesis of random selection from the population is violated and specific
methods to handle this are required (Diggle et al., 2000; Jarner et al., 2002).

174 7 Spatial Point Pattern Analysis

In general, we have a set of n1 cases and n0 controls. Conditioning on the
number of cases and controls, we can assume that they are realisations of two
IPP with intensities λ1(x) and λ0(x), respectively. In this setting, assuming
that the distribution of cases and controls is the same means that the inten-
sities λ1(x) and λ0(x) are equal up to a proportionality constant, which is
equal to the ratio between n1 and n0: λ1(x) = n1

n0
λ0(x). Note that the ratio

between cases and controls is determined only by the study design.

Spatial Variation of the Relative Risk

Kelsall and Diggle (1995a,b) consider the estimator of the disease risk given by
the ratio between the intensity of the cases and controls ρ(x) = λ1(x)/λ0(x)
in order to assess the variation of the risk. Under the null hypothesis of equal
spatial distribution, the ratio is a constant ρ0 = n1/n0.

Alternatively, a risk estimate r(x) can be estimated by working with the
logarithm of the ratio of the densities of cases and controls:

r(x) = log(f(x)/g(x)), (7.4)

f(x) = λ1(x)/
∫

A
λ1(x) dx and g(x) = λ0(x)/

∫
A

λ0(x) dx, respectively. In this
case, the null hypothesis of equal spatial distributions becomes r(x) = 0. The
advantage of this approach is that 0 is the reference value for equal spatial dis-
tribution without regarding the number of cases and controls. Unfortunately,
this presents several computational problems because the intensity of the con-
trols may be zero at some points, as addressed by, for example, Waller and
Gotway (2004, pp. 165–166).

Kelsall and Diggle (1995a) propose the use of a kernel smoothing to es-
timate each intensity and evaluate different alternatives to estimate the op-
timum bandwidth for each kernel smoothing. They conclude that the best
option is to select the bandwidth by cross-validation and use the same band-
width in both cases.

They choose the bandwidth that minimises the following criterion:

CV (h) = −
∫

A

r̂h(x)2 dx − 2n−1
1

n1∑
i=1

r̂−i
h (xi)/f̂−i

h (xi)

+ 2n−1
0

n1+n0∑
i=n1+1

r̂−i
h (xi)/ĝ−i

h (xi),

where the superscript −i means that the function is computed by removing
the ith point.

This criterion is not currently implemented, but it can be done easily
by using function lambdahat in package spatialkernel, which allows for the
computing of the intensity at a set of point using a different set of points. Our
implementation of the method (which does not use border correction to avoid

7.5 Some Applications in Spatial Epidemiology 175

computational instability) gave an optimal bandwidth of 0.275. However, as
discussed in Diggle et al. (2007), these automatic methods should be used as
a guidance when estimating the bandwidth. In this case, the value of 0.275
seems a bit high given the scale of the data and we have set it to 0.125.

> bwasthma <- 0.125

To avoid computational problems, we use the risk estimator ρ(x). First of
all, we need to create a grid over the study region where the risk ratio will be
estimated, using the helper function Sobj_SpatialGrid.

> library(maptools)

> sG <- Sobj_SpatialGrid(spbdry, maxDim = 50)$SG

> gt <- slot(sG, "grid")

The risk ratio can be computed easily by estimating the intensity of cases
and controls first, and then taking the ratio (as shown below) after using the
spkernel2d function from splancs.

> pbdry <- slot(slot(slot(spbdry, "polygons")[[1]], "Polygons")[[1]],

+ "coords")

After unpacking the boundary coordinates of the study area, the point
locations are divided between cases and controls and the intensities of each
subset calculated for grid cells lying within the study area, using the cho-
sen bandwidth. The splancs package uses a simple form of single polygon
boundary, while spatstat can use multiple separate polygons (SpatialPoly-
gons objects can be coerced to suitable owin objects).

> library(splancs)

> cases <- spasthma[spasthma$Asthma == "case",]

> ncases <- nrow(cases)

> controls <- spasthma[spasthma$Asthma == "control",]

> ncontrols <- nrow(controls)

> kcases <- spkernel2d(cases, pbdry, h0 = bwasthma, gt)

> kcontrols <- spkernel2d(controls, pbdry, h0 = bwasthma,

+ gt)

The results contain missing values for grid cells outside the study area, and
so we first construct a SpatialGridDataFrame object to hold them and coerce
to a SpatialPixelsDataFrame to drop the missing cells. The ratio is calculated,
setting non-finite values from division by zero to missing.

> df0 <- data.frame(kcases = kcases, kcontrols = kcontrols)

> spkratio0 <- SpatialGridDataFrame(gt, data = df0)

> spkratio <- as(spkratio0, "SpatialPixelsDataFrame")

> spkratio$kratio <- spkratio$kcases/spkratio$kcontrols

> is.na(spkratio$kratio) <- !is.finite(spkratio$kratio)

> spkratio$logratio <- log(spkratio$kratio) - log(ncases/ncontrols)

176 7 Spatial Point Pattern Analysis

To assess departure from the null hypothesis, they propose the following
test statistic:

T =
∫

A

(ρ(x) − ρ0)2 dx.

This integral can be estimated up to a proportionality constant by computing
ρ(x) on a regular grid of points {si, i = 1, . . . , p} and computing the sum of
the values {(ρ(si) − ρ0)2, i = 1, . . . , p}. Hence, an estimate of T is given by

T̂ = |c|
p∑

i=1

(ρ̂(si) − ρ̂0)2,

where |c| is the area of the cells of the grid, ρ̂0 is n1/n0, and ρ̂(x) the estimate
of the risk ratio.

Note that the former test is to assess whether there is constant risk all
over the study region. However, risk is likely to vary spatially and another
appropriate test can be done by substituting ρ0 for ρ̂(x) (Kelsall and Diggle,
1995a). Now we are testing for significance of risk given that we assume that
its variation is not homogeneous (i.e. equal to ρ̂(x)) and the test statistic is

T =
∫

A

(ρ(x) − ρ̂(x))2 dx.

Significance of the observed value of the test statistic can be computed by
means of a Monte Carlo test (Kelsall and Diggle, 1995b). In this test, we com-
pute k values of the test statistic T by re-labelling cases and controls (keeping
n1 and n0 fixed) and calculating a new risk ratio ρ̂i(x) i = 1, . . . , n for each
new set of cases and controls. This will provide a series of values T 1, . . . , T k

under the null hypothesis. If we call T 0 the value of T for the observed data
set, the significance (p-value) can be computed by taking (t+1)/(k+1), where
t is the number of values of T i, i = 1, . . . , n greater than T 0.

The Monte Carlo test is based on the fact that cases and controls are
equally distributed under the null hypothesis. In that case, if we change the
label of a case to be a control (or viceversa), the new set of cases (or controls)
still have the same spatial distribution and will have the same risk function
ρ(x). If that is not the case, then the re-labelling of cases and controls will
produce different risk functions.

> idxinbdry <- overlay(sG, spbdry)

> idxna <- !is.na(idxinbdry)

We use the overlay method to find grid cells within the study area bound-
ary, and use the number of included grid cells to set up objects to hold the
results for the re-labelled cases and controls:

> niter <- 99

> ratio <- rep(NA, niter)

> pvaluemap <- rep(0, sum(idxna))

> rlabelratio <- matrix(NA, nrow = niter, ncol = sum(idxna))

7.5 Some Applications in Spatial Epidemiology 177

The probability map is calculated by repeating the re-labelling process
niter times, and tallying the number of times that the observed kernel density
ratio is less than the re-labelled ratios. In the loop, the first commands carry
out the re-labelling from the full set of points, and the remainder calculate
the ratio and store the results:

> for (i in 1:niter) {

+ idxrel <- sample(spasthma$Asthma) == "case"

+ casesrel <- spasthma[idxrel,]

+ controlsrel <- spasthma[!idxrel,]

+ kcasesrel <- spkernel2d(casesrel, pbdry, h0 = bwasthma,

+ gt)

+ kcontrolsrel <- spkernel2d(controlsrel, pbdry, h0 = bwasthma,

+ gt)

+ kratiorel <- kcasesrel[idxna]/kcontrolsrel[idxna]

+ is.na(kratiorel) <- !is.finite(kratiorel)

+ rlabelratio[i,] <- kratiorel

+ pvaluemap <- pvaluemap + (spkratio$kratio < kratiorel)

+ }

Figure 7.10 shows the kernel ratio of cases and controls, using a bandwidth
of 0.125, as discussed before. We may have computational problems when
estimating the intensity at points very close to the boundary of the study
area and obtain NA instead of the value of the intensity. To avoid problems
with this, we have filtered out these points using a new index called idxna2.

0
 0.13
 0.147

 0.16
 0.196
 0.212
 0.227
 0.241
 0.277
 0.324
 0.442

Fig. 7.10. Kernel ratio of the intensity of cases and controls. The continuous and
dashed lines show the surfaces associated with 0.95 and 0.05 p-values, respectively,
grey crosses mark the pollution sources. The value of ρ̂0 which marks a flat constant
risk is 0.2

178 7 Spatial Point Pattern Analysis

This will ensure that we use the same number of points when we estimate the
value of the test statistic for the observed data and the permuted re-labelled
sets of cases and controls.

> idxna2 <- apply(rlabelratio, 2, function(x) all(is.finite(x)))

> rhomean <- apply(rlabelratio[, idxna2], 2, mean)

> c <- prod(slot(gt, "cellsize"))

> ratiorho <- c * sum((spkratio$kratio[idxna2] - ncases/ncontrols)^2)

> ratio <- c * apply(rlabelratio[, idxna2], 1, function(X,

+ rho0) {

+ sum((X - rho0)^2)

+ }, rho0 = ncases/ncontrols)

> pvaluerho <- (sum(ratio > ratiorho) + 1)/(niter + 1)

The results for the test with null hypothesis ρ = ρ̂0 turned out to be
non-significant (p-value of 0.69), which means that the observed risk ratio is
consistent with a constant risk ratio. In principle, this agrees with the fact
that Diggle and Rowlingson (1994) did not find a significant association with
distance from main roads or two of the pollution sources and only a possi-
ble association with the remaining site, which should be further investigated.
However, they found some relationship with other risk factors, but these were
not of a spatial nature and, hence, this particular test is unable to detect it.

Had the p-value of the test been significant, 90% point confidence surfaces
could be computed in a similar way to the envelopes shown before, but con-
sidering the different values of the estimates of ρ(x) under random labelling
and computing the p-value at each point. The procedure computes, for each
point xj in the grid, the proportion of values ρ̂i(xj) that are lower than ρ̂(xj),
where the ρ̂i(xj), i = 1, . . . , R are the estimated ratios obtained by re-labelling
cases and controls. Finally, the 0.05 and 0.95 contours of the p-value surface
can be displayed on the plot of ρ̂(x) to highlight areas of significant low and
high risk, respectively. This is shown in Fig. 7.10.

The contour lines at a given value can be obtained using function con-

tourLines, which takes an image object. This will generate contour lines that
can be converted to SpatialLinesDataFrame objects so that they can be added
to a plot as a layout.

> spkratio$pvaluemap <- (pvaluemap + 1)/(niter + 1)

> imgpvalue <- as.image.SpatialGridDataFrame(spkratio["pvaluemap"])

> clpvalue <- contourLines(imgpvalue, levels = c(0, 0.05,

+ 0.95, 1))

> cl <- ContourLines2SLDF(clpvalue)

7.5.2 Binary Regression Estimator

Kelsall and Diggle (1998) propose a binary regression estimator to estimate the
probability of being a case at a given location, which can be easily extended to

7.5 Some Applications in Spatial Epidemiology 179

allow for the incorporation of covariates. In principle, the probabilities can be
estimated by assuming that we have a variable Yi, which labels cases (yi = 1)
and controls (yi = 0) in a set of n = n1 +n2 events. Conditioning on the point
locations, Yi is a realisation of a Bernoulli variable Yi with probability

P (Yi = 1|Xi = xi) = p(xi) =
λ1(xi)

λ0(xi) + λ1(xi)
.

In practise, the following Nadaraya–Watson kernel estimator can be used:

p̂h(x) =
∑n

i=1 h−2κh((x − xi)/h)yi∑n
i=1 h−2κh((x − xi)/h)

, (7.5)

where κh(u) is a kernel function. Note that p(x) is related to the log-ratio
relative risk r(x) as follows:

logit(p(x)) = log
(

p(x)
1 − p(x)

)
= log

(
λ1(x)
λ0(x)

)
= r(x) + log(n1/n0).

p̂h(x) can be estimated as

p̂h(x) =
λ̂1(x)

λ̂1(x) + λ̂0(x)
.

To estimate the bandwidth that appears in this new estimator, Kelsall and
Diggle (1998) suggest another cross-validation criterion based on the value of
h that minimises

CV (h) =

[
n∏

i=1

p̂−i
h (xi)yi(1 − p̂−i

h (xi))1−yi

]−1/n

.

Using the new criterion we obtained a bandwidth of 0.225, which is very
similar to the one obtained with the previous cross-validation criterion. How-
ever, we believe that this value would over-smooth the data and we have set
it to 0.125. The estimator for p(x) can be computed easily, as is shown below.
Figure 7.11 shows the resulting estimate.

> bwasthmap <- 0.125

> lambda1 <- spkernel2d(cases, pbdry, h0 = bwasthmap, gt)

> lambda0 <- spkernel2d(controls, pbdry, h0 = bwasthmap,

+ gt)

> lambda1 <- lambda1[idxna]

> lambda0 <- lambda0[idxna]

> spkratio$prob <- lambda1/(lambda1 + lambda0)

> is.na(spkratio$prob) <- !is.finite(spkratio$prob)

180 7 Spatial Point Pattern Analysis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 7.11. Binary regression estimator using the probability of being a case at every
grid cell in the study region

7.5.3 Binary Regression Using Generalised Additive Models

This formulation allows the inclusion of covariates in the model by means of
standard logistic regression. In addition, the residual spatial variation can be
modelled by including a smooth spatial function. In other words, if u is a
vector of covariates observed at location x and g(x) is a smooth function not
dependent on the covariates, the formulation is

logit(p(x)) = u′β + g(x).

If the covariates are missing, the former expression is just another way of
estimating the probability surface. Kelsall and Diggle (1998) estimate g(x)
using a kernel weighted regression. We have used package mgcv (Wood, 2006)
to fit the Generalised Additive Model (GAM) models but, given that this
package lacks the same non-parametric estimator used in Kelsall and Diggle
(1998), we have preferred the use of a penalised spline instead.

The following example shows how to fit a GAM using the distance of the
events to the pollution sources and main roads, and controlling for known
and possible risk factors such as gender, age, previous events of hay fever, and
having at least one smoker in the house. Rows have been filtered so that only
children with a valid value of Gender (1 or 2) are used. We have included the
distance as a proxy of the actual exposure to any risk factor caused by the
pollution sources or the roads. Other models that consider a special modelling
for the distance are considered later.

7.5 Some Applications in Spatial Epidemiology 181

> spasthma$y <- as.integer(!as.integer(spasthma$Asthma) -

+ 1)

> ccasthma <- coordinates(spasthma)

> spasthma$x1 <- ccasthma[, 1]

> spasthma$x2 <- ccasthma[, 2]

> spasthma$dist1 <- sqrt(spasthma$d2source1)

> spasthma$dist2 <- sqrt(spasthma$d2source2)

> spasthma$dist3 <- sqrt(spasthma$d2source3)

> spasthma$droads <- sqrt(spasthma$roaddist2)

> spasthma$smoking <- as.factor(as.numeric(spasthma$Nsmokers >

+ 0))

> spasthma$Genderf <- as.factor(spasthma$Gender)

> spasthma$HayFeverf <- as.factor(spasthma$HayFever)

> library(mgcv)

> gasthma <- gam(y ~ 1 + dist1 + dist2 + dist3 + droads +

+ Genderf + Age + HayFeverf + smoking + s(x1, x2),

+ data = spasthma[spasthma$Gender == 1 | spasthma$Gender ==

+ 2,], family = binomial)

> summary(gasthma)

Family: binomial

Link function: logit

Formula:

y ~ 1 + dist1 + dist2 + dist3 + droads + Genderf + Age + HayFeverf +

smoking + s(x1, x2)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.0326784 0.9195177 -2.211 0.0271 *

dist1 0.9822575 6.0714999 0.162 0.8715

dist2 -9.5790621 5.7708614 -1.660 0.0969 .

dist3 11.2247321 7.8724979 1.426 0.1539

droads 0.0001479 0.0001717 0.861 0.3890

Genderf2 -0.3476861 0.1562020 -2.226 0.0260 *

Age -0.0679031 0.0382349 -1.776 0.0757 .

HayFeverf1 1.1881331 0.1875414 6.335 2.37e-10 ***

smoking1 0.1651210 0.1610362 1.025 0.3052

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

edf Est.rank Chi.sq p-value

s(x1,x2) 2.001 2 7.004 0.0301 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.0403 Deviance explained = 4.94%

UBRE score = -0.12348 Scale est. = 1 n = 1283

182 7 Spatial Point Pattern Analysis

The results show that the significant variables are the presence of reported
hay fever (p-value 2.4e-10) and gender (p-value 0.026). The coefficient of the
second pollution source is marginally significant (p-value 0.097). The smoothed
residual term using splines is significant (p-value 0.0301), which suggests that
there may have been some residual spatial variation unexplained in the gen-
eralised linear model.

7.5.4 Point Source Pollution

In the previous model, we have shown how to consider the exposure to a
number of pollution sources by including the distance as a covariate in the
model. However, this approach does not allow for a more flexible parametric
modelling of the exposure according to the distance to a pollution source.
Diggle (1990) proposed the use of an IPP for the cases in which their intensity
accounts for the distance to the pollution sources. In particular, the intensity
is as follows:

λ1(x) = ρλ0(x)f(x − x0; θ),

ρ measures the overall number of events per unit area, λ0(x) is the spatial vari-
ation of the underlying population (independent of the effect of the source),
and f(x − x0; θ) is a function of the distance from point x to the location of
the source x0 and has parameters θ. Diggle (1990) uses a decaying function
with distance

f(x − x0;α, β) = 1 + α exp(−β||x − x0||2).

Parameters ρ, α, and β of λ1(x) can be estimated by maximising the likelihood
of the IPP, assuming that λ0(x) is estimated by kernel smoothing taking a
certain value h0 of the bandwidth. That is, the value of h0 is not obtained by
the maximisation procedure, but choosing a reasonable value for h0 can be
difficult and it can have an important impact on the results.

A slightly different approach that does not require the choice of a band-
width is considered in Diggle and Rowlingson (1994). It is based on the previ-
ous scenario, but conditioning on the location of cases and controls to model
the probability of being a case at location x:

p(x) =
λ1(x)

λ1(x) + λ0(x)
=

ρf(x − x0;α, β)
1 + ρf(x − x0;α, β)

.

As in the previous scenario, the remaining parameters of the model can be
estimated by maximising the log-likelihood:

L(ρ, θ) =
n1∑
i=1

log(p(xi)) +
n0∑

j=1

log(1 − p(xj)).

7.5 Some Applications in Spatial Epidemiology 183

This model can be fitted using function tribble from package splancs.
Given that λ0(x) vanishes we only need to pass the distances to the source
and the labels of cases and controls.

To compare models that may include different sets of pollution sources or
covariates, Diggle and Rowlingson (1994) compare the difference of the log-
likelihoods by means of a chi-square test. The following example shows the
results for the exposure model with distance to source two and another model
with only the covariate hay fever.

> D2_mat <- as.matrix(spasthma$dist2)

> RHO <- ncases/ncontrols

> expsource2 <- tribble(ccflag = spasthma$y, vars = D2_mat,

+ rho = RHO, alphas = 1, betas = 1)

> print(expsource2)

Call:

tribble(ccflag = spasthma$y, vars = D2_mat, alphas = 1, betas = 1,

rho = RHO)

Kcode = 2

Distance decay parameters:

Alpha Beta

[1,] 1.305824 25.14672

rho parameter : 0.163395847627903

log-likelihood : -580.495955916672

null log-likelihood : -581.406203518987

D = 2(L-Lo) : 1.82049520462942

> Hay_mat <- as.matrix(spasthma$HayFever)

> exphay <- tribble(ccflag = spasthma$y, rho = RHO, covars = Hay_mat,

+ thetas = 1)

> print(exphay)

Call:

tribble(ccflag = spasthma$y, rho = RHO, covars = Hay_mat, thetas = 1)

Kcode = 2

Covariate parameters:

[1] 1.103344

rho parameter : 0.163182953009353

log-likelihood : -564.368250327802

null log-likelihood : -581.406203518987

D = 2(L-Lo) : 34.0759063823702

184 7 Spatial Point Pattern Analysis

As the output shows, the log-likelihood for the model with exposure to
source 2 is −580.5, whilst for the model with the effect of hay fever is
only −564.4. This means that there is a significant difference between the
two models and that the model that accounts for the effect of hay fever is
preferable. Even though the second source has a significant impact on the
increase of the cases of asthma, its effect is not as important as the effect of
having suffered from hay fever. However, another model could be proposed to
account for both effects at the same time.
> expsource2hay <- tribble(ccflag = spasthma$y, vars = D2_mat,

+ rho = RHO, alphas = 1, betas = 1, covars = Hay_mat,

+ thetas = 1)

This new model (output not shown) has a log-likelihood of −563, with
two more parameters than the model with hay fever. Hence, the presence of
the second source has a small impact on the increase of cases of asthma after
adjusting for the effect of hay fever, which can be regarded as the main factor
related to asthma, and the model with hay fever only should be preferred. The
reader is referred to Diggle and Rowlingson (1994) and Diggle (2003, p. 137)
for more details on how the models can be compared and results for other
models.

These types of models are extended by Diggle et al. (1997), who consider
further options for the choice of the function f(x− x0, α, β) to accommodate
different spatial variants of the risk around the source.

In our experience, these models can be very sensitive to the initial values
for certain data sets, especially if they are sparse. Hence, it is advised to fit the
model using different values for the initial values to ensure that the algorithm
is not trapped in a local maximum of the likelihood.

Assessment of General Spatial Clustering

As discussed by Diggle (2000), it is important to distinguish between spatial
variation of the risk and clustering. Spatial variation occurs when the risk
is not homogeneous in the study region (i.e. all individuals do not have the
same risk) but cases appear independently of each other according to this risk
surface, whilst clustering occurs when the occurrence of cases is not at random
and the presence of a case increases the probability of other cases appearing
nearby.

The former methods allow us to inspect a raised incidence in the number
of cases around certain pre-specified sources. However, no such source is iden-
tified a priori, and a different type of test is required to assess clustering in
the cases.

Diggle and Chetwynd (1991) propose a test based on the homogeneous
K-function to assess clustering of the cases as compared to the controls. The
null hypothesis is as before, that is cases and controls are two IPP that have
the same intensities up to a proportionality constant. Hence, they will pro-
duce the same K-functions. Note that the inverse is not always true, that

7.5 Some Applications in Spatial Epidemiology 185

is two point processes with the same homogeneous K-function can be com-
pletely different (Baddeley and Silverman, 1984). Diggle and Chetwynd (1991)
take the difference of the two K-functions to evaluate whether the cases tend
to cluster after considering the inhomogeneous distribution of the popula-
tion: D(s) = K1(s) − K0(s), where K1(s) and K0(s) are the homogeneous
K-functions of cases and controls, respectively.

The test statistic is

D =
∫

A

D(s)
var[D(s)]1/2

ds,

where var[D(s)] is the variance of D(s) under the null hypothesis. Diggle and
Chetwynd (1991) compute the value of this variance under random labelling of
cases and controls so that the significance of the test statistic can be assessed.
Note that under the null hypothesis the expected value of the test statistic D
is zero. Finally, the integral is approximated in practice by a discrete sum at
a set of finite distances, as the T statistic was computed before.

Significant departure from 0 means that there is a difference in the distri-
bution of cases and controls, with clustering occurring at the range of those
distances for which D(s) > 0. Furthermore, pointwise envelopes can be pro-
vided for the test statistic by the same Monte Carlo test so that the degree of
clustering can be assessed. Function Kenv.label also provides envelopes for the
difference of the K-functions but it does not carry out any test of significance.

> s <- seq(0, 0.15, by = 0.01)

> khcases <- khat(coordinates(cases), pbdry, s)

> khcontrols <- khat(coordinates(controls), pbdry, s)

> khcov <- khvmat(coordinates(cases), coordinates(controls),

+ pbdry, s)

> T0 <- sum(((khcases - khcontrols))/sqrt(diag(khcov)))

> niter <- 99

> T <- rep(NA, niter)

> khcasesrel <- matrix(NA, nrow = length(s), ncol = niter)

> khcontrolsrel <- matrix(NA, nrow = length(s), ncol = niter)

> for (i in 1:niter) {

+ idxrel <- sample(spasthma$Asthma) == "case"

+ casesrel <- coordinates(spasthma[idxrel,])

+ controlsrel <- coordinates(spasthma[!idxrel,])

+ khcasesrel[, i] <- khat(casesrel, pbdry, s)

+ khcontrolsrel[, i] <- khat(controlsrel, pbdry, s)

+ khdiff <- khcasesrel[, i] - khcontrolsrel[, i]

+ T[i] <- sum(khdiff/sqrt(diag(khcov)))

+ }

> pvalue <- (sum(T > T0) + 1)/(niter + 1)

186 7 Spatial Point Pattern Analysis

0.00 0.05 0.10 0.15

−
0.

01
5

s

D
(s

)

Actual value
Approx. 95% C.I.
Sim. 95% envelopes

0.
01

5
0.

00
5

−
0.

00
5

Fig. 7.12. Actual value of D(s) with approximate 95% confidence intervals and
95% envelopes

The p-value for this data set is 0.36, meaning that there is no signifi-
cant difference between the distribution of cases and controls.The outcome
is consistent with the fact that the observed K-function is contained by the
simulation envelopes and approximated 95% confidence intervals, as shown in
Fig. 7.12.

7.5.5 Accounting for Confounding and Covariates

Diggle et al. (2007) propose a similar way of assessing clustering by means of
the inhomogeneous K-function KI,λ(s) (Baddeley et al., 2000). For an IPP
with intensity λ(x), it can be estimated as

K̂I,λ(s) = |A|−1
n∑

i=1

∑
j �=i

w−1
ij

|{xj : d(xi, xj) ≤ s}|
λ(xi)λ(xj)

.

Note that this estimator is a generalisation of the estimator of the homoge-
neous K-function from expression (7.3) and that in fact reduces to it when
instead of an IPP we have an HPP (the intensity becomes λ(x) = λ). Similarly,
the value of KI,λ(s) for an IPP with intensity λ(s) is πs2.

In practise the intensity λ(x) needs to be estimated either parametrically
or non-parametrically, so that the estimator that we use is

K̂I,λ̂(s) = |A|−1
n∑

i=1

∑
j �=i

w−1
ij

|{xj : d(xi, xj) ≤ s}|
λ̂(xi)λ̂(xj)

.

Values of K̂I,λ̂(s) higher than πs2 will mean that the point pattern shows
more aggregation than that shown by λ(x) and values lower than πs2 reflect
more relative homogeneity.

7.5 Some Applications in Spatial Epidemiology 187

To be able to account for confounding and risk factors, Diggle et al. (2007)
propose the use of a semi-parametric estimator of the intensity in a case–
control setting. The basic assumption is that controls are drawn from an
IPP with spatially varying intensity λ0(x). The cases are assumed to appear
as a result of the inhomogeneous distribution of the population, measured
by λ0(x), plus other risk factors, measured by a set of spatially referenced
covariates z(x). Hence, the intensity of the cases is modelled as

λ1(x) = exp{α + βz(x)}λ0(x),

where α and β are the intercept and covariate coefficients of the model,
respectively. When there are no covariates, the intensity of the cases
reduces to

λ1(x) =
n1

n0
λ0(x).

Note that it is possible to use any generic non-negative function f(z(x); θ) to
account for other types of effects

λ1(x) = λ0(x)f(z(x); θ).

This way it is possible to model non-linear and additive effects.

To estimate the parameters that appear in the intensity of the cases, we
can use the same working variables Yi that we have used before (see the binary
regression estimator in Sect. 7.5.2), with values 1 for cases and 0 for controls.
Conditioning on the locations of cases and controls, Yi is a realisation of a
Bernoulli process with probability

P (Yi = 1|xi, z(x)) = p(xi) =
λ1(x)

λ0(x) + λ1(x)
=

exp{α + βz(x)}
1 + exp{α + βz(x)} . (7.6)

Hence, conditioning on the locations of cases and controls, the problem
is reformulated as a logistic regression and α and β can be estimated using
function glm.

Baddeley et al. (2000) estimate the intensity non-parametrically and
use the same data to estimate both the intensity and the inhomogeneous
K-function, but Diggle et al. (2007) show that this can give poor performance
in detecting clustering. This problem arises from the difficulty of disentan-
gling inhomogeneous spatial variation of process from clustering of the events
(Cox, 1955). Another problem that appears in practise is that the intensities
involved must be bounded away from zero. If kernel smoothing is used, a good
alternative to the quartic kernel is a Gaussian bivariate kernel.

The following piece of code shows how to estimate the inhomogeneous
K-function both without covariates and accounting for hay fever.

188 7 Spatial Point Pattern Analysis

> glmasthma <- glm(y ~ HayFeverf, data = spasthma, family = "binomial")

> prob <- fitted(glmasthma)

> weights <- exp(glmasthma$linear.predictors)

> library(spatialkernel)

> setkernel("gaussian")

> lambda0 <- lambdahat(coordinates(controls), bwasthma,

+ coordinates(cases), pbdry, FALSE)$lambda

> lambda1 <- weights[spasthma$Asthma == "case"] * lambda0

> ratiocc <- ncases/ncontrols

> kihnocov <- kinhat(coordinates(cases), ratiocc * lambda0,

+ pbdry, s)$k

> kih <- kinhat(coordinates(cases), lambda1, pbdry, s)$k

To assess for any residual clustering left after adjusting for covariates,
Diggle et al. (2007) suggest the following test statistic:

D =
∫ s0

0

K̂I,λ̂1
(s) − E[s]

var(KI,λ(s))1/2
ds,

E[s] is the expectation of K̂I,λ̂1
(s) under the null hypothesis. In principle, it

should be πs2, but when kernel estimators are used in the computation of the
intensity, the estimate of KI,λ(s) may be biased. E[s] can be computed as the
average of all the estimates K̂I,λ̂1

(s), which have been obtained during the
Monte Carlo simulations (as explained below). var(KI,λ(s)) can be computed
in a similar way.

The Monte Carlo test proposed by Diggle et al. (2007) is similar to the one
that we used in the homogeneous case (see Sect. 7.5.4), with the difference that
the re-labelling must be done taking into account the effects of the covariates.
That is, when we relabel cases and controls, the probability of being a case
will not be the same for all points but it will depend on the values of z(x). In
particular, these probabilities are given by (7.6). The values of the covariates
are fixed to the values obtained by fitting the model with the observed data
set (i.e. they are not re-estimated when the points are re-labelled) because we
are only interested in testing for the spatial variation and not that related to
the estimation of the coefficients of the covariates.

> niter <- 99

> kinhomrelnocov <- matrix(NA, nrow = length(s), ncol = niter)

> kinhomrel <- matrix(NA, nrow = length(s), ncol = niter)

> for (i in 1:niter) {

+ idxrel <- sample(spasthma$Asthma, prob = prob) ==

+ "case"

+ casesrel <- coordinates(spasthma[idxrel,])

+ controlsrel <- coordinates(spasthma[!idxrel,])

+ lambda0rel <- lambdahat(controlsrel, bwasthma, casesrel,

+ pbdry, FALSE)$lambda

+ lambda1rel <- weights[idxrel] * lambda0rel

+ kinhomrelnocov[, i] <- kinhat(casesrel, ratiocc *

7.5 Some Applications in Spatial Epidemiology 189

+ lambda0rel, pbdry, s)$k

+ kinhomrel[, i] <- kinhat(casesrel, lambda1rel, pbdry,

+ s)$k

+ }

> kinhsdnocov <- apply(kinhomrelnocov, 1, sd)

> kihmeannocov <- apply(kinhomrelnocov, 1, mean)

> D0nocov <- sum((kihnocov - kihmeannocov)/kinhsdnocov)

> Dnocov <- apply(kinhomrelnocov, 2, function(X) {

+ sum((X - kihmeannocov)/kinhsdnocov)

+ })

> pvaluenocov <- (sum(Dnocov > D0nocov) + 1)/(niter + 1)

> kinhsd <- apply(kinhomrel, 1, sd)

> kihmean <- apply(kinhomrel, 1, mean)

> D0 <- sum((kih - kihmean)/kinhsd)

> D <- apply(kinhomrel, 2, function(X) {

+ sum((X - kihmean)/kinhsd)

+ })

> pvalue <- (sum(D > D0) + 1)/(niter + 1)

Figure 7.13 shows the estimated values of the inhomogeneous K-function
plus 95% envelopes under the null hypothesis. In both cases there are no signs
of spatial clustering. The p-values are 0.14 (no covariates) and 0.18 (with hay
fever). The increase in the p-value when hay fever is used to modulate the
intensity shows how it accounts for some spatial clustering. This is consistent
with the plots in Fig. 7.13.

No covariates

s

k I
, λ

−E
[s

]
^

Adjusting for Hay Fever

s

^

−0
.0

5
0.

05
0.

15

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15

−0
.0

5
0.

05
0.

15

k I
, λ

−E
[s

]
^

^

Fig. 7.13. Results of the test based on the inhomogeneous K-function for the asthma
data set. The intensity has been modulated to account for the effect of suffering from
hay fever

190 7 Spatial Point Pattern Analysis

7.6 Further Methods for the Analysis of Point Patterns

In this chapter we have just covered some key examples but the analy-
sis of point patterns with R goes beyond this. Other important problems
that we have not discussed here are the analysis of marked point processes
(Schabenberger and Gotway 2005, pp. 118–122; Diggle 2003, pp. 82–85),
spatio-temporal analysis (see Schabenberger and Gotway 2005, pp. 442–445;
Diggle 2006), and complex model fitting and simulation from different point
processes (as extensively discussed in Möller and Waagepetersen, 2003). Bad-
deley et al. (2005) provide a recent compendium of theoretical problems and
applications of the analysis of point patterns, including a description of pack-
age spatstat. Some of the examples described therein should be reproducible
using the contents of this chapter.

The Spatial Task View contains a list of other packages for the analysis
and visualisation of point patterns. The reader is referred there for updated
information.

8

Interpolation and Geostatistics

8.1 Introduction

Geostatistical data are data that could in principle be measured anywhere,
but that typically come as measurements at a limited number of observation
locations: think of gold grades in an ore body or particulate matter in air sam-
ples. The pattern of observation locations is usually not of primary interest, as
it often results from considerations ranging from economical and physical con-
straints to being ‘representative’ or random sampling varieties. The interest
is usually in inference of aspects of the variable that have not been measured
such as maps of the estimated values, exceedence probabilities or estimates of
aggregates over given regions, or inference of the process that generated the
data. Other problems include monitoring network optimisation: where should
new observations be located or which observation locations should be removed
such that the operational value of the monitoring network is maximised.

Typical spatial problems where geostatistics are used are the following:

• The estimation of ore grades over mineable units, based on drill hole data
• Interpolation of environmental variables from sample or monitoring net-

work data (e.g. air quality, soil pollution, ground water head, hydraulic
conductivity)

• Interpolation of physical or chemical variables from sample data
• Estimation of spatial averages from continuous, spatially correlated data

In this chapter we use the Meuse data set used by Burrough and McDonnell
(1998). The notation we use follows mostly that of Christensen (1991), as
this text most closely links geostatistics to linear model theory. Good texts
on geostatistics are Chilès and Delfiner (1999), Christensen (1991), Cressie
(1993), and Journel and Huijbregts (1978). More applied texts are, for example
Isaaks and Strivastava (1989), Goovaerts (1997), and Deutsch and Journel
(1992).

Geostatistics deals with the analysis of random fields Z(s), with Z ran-
dom and s the non-random spatial index. Typically, at a limited number of

192 8 Interpolation and Geostatistics

sometimes arbitrarily chosen sample locations, measurements on Z are avail-
able, and prediction (interpolation) of Z is required at non-observed locations
s0, or the mean of Z is required over a specific region B0. Geostatistical
analysis involves estimation and modelling of spatial correlation (covariance
or semivariance), and evaluating whether simplifying assumptions such as sta-
tionarity can be justified or need refinement. More advanced topics include
the conditional simulation of Z(s), for example over locations on a grid, and
model-based inference, which propagates uncertainty of correlation parame-
ters through spatial predictions or simulations.

Much of this chapter will deal with package gstat, because it offers the
widest functionality in the geostatistics curriculum for R: it covers variogram
cloud diagnostics, variogram modelling, everything from global simple kriging
to local universal cokriging, multivariate geostatistics, block kriging, indicator
and Gaussian conditional simulation, and many combinations. Other R pack-
ages that provide additional geostatistical functionality are mentioned where
relevant, and discussed at the end of this chapter.

8.2 Exploratory Data Analysis

Spatial exploratory data analysis starts with the plotting of maps with a
measured variable. To express the observed value, we can use colour or symbol
size,

> library(lattice)

> library(sp)

> data(meuse)

> coordinates(meuse) <- c("x", "y")

> spplot(meuse, "zinc", do.log = T)

> bubble(meuse, "zinc", do.log = T, key.space = "bottom")

to produce plots with information similar to that of Fig. 3.8.
The evident structure here is that zinc concentration is larger close to the

river Meuse banks. In case of an evident spatial trend, such as the relation
between top soil zinc concentration and distance to the river here, we can also
plot maps with fitted values and with residuals (Cleveland, 1993), as shown
in Fig. 8.1, obtained by

> xyplot(log(zinc) ~ sqrt(dist), as.data.frame(meuse))

> zn.lm <- lm(log(zinc) ~ sqrt(dist), meuse)

> meuse$fitted.s <- predict(zn.lm, meuse) - mean(predict(zn.lm,

+ meuse))

> meuse$residuals <- residuals(zn.lm)

> spplot(meuse, c("fitted.s", "residuals"))

where the formula y ∼ x indicates dependency of y on x. This figure reveals
that although the trend removes a large part of the variability, the residuals do
not appear to behave as spatially unstructured or white noise: residuals with

8.3 Non-Geostatistical Interpolation Methods 193

sqrt(dist)

lo
g(

zi
nc

)

5.0

5.5

6.0

6.5

7.0

7.5

0.0 0.2 0.4 0.6 0.8

fitted.s residuals

[−1.283,−0.5633]
(−0.5633,0.1568]
(0.1568,0.8768]
(0.8768,1.597]

Fig. 8.1. Zinc as a function of distance to river (left), and fitted-residual maps
(fitted.s: mean subtracted) for the linear regression model of log zinc and square-
root transformed distance to the river

a similar value occur regularly close to another. More exploratory analysis will
take place when we further analyse these data in the context of geostatistical
models; first we deal with simple, non-geostatistical interpolation approaches.

8.3 Non-Geostatistical Interpolation Methods

Usually, interpolation is done on a regular grid. For the Meuse data set, co-
ordinates of points on a regular grid are already defined in the meuse.grid

data.frame, and are converted into a SpatialPixelsDataFrame by

> data(meuse.grid)

> coordinates(meuse.grid) <- c("x", "y")

> meuse.grid <- as(meuse.grid, "SpatialPixelsDataFrame")

Alternatively, we could interpolate to individual points, sets of irregularly
distributed points, or to averages over square or irregular areas (Sect. 8.5.6).

8.3.1 Inverse Distance Weighted Interpolation

Inverse distance-based weighted interpolation (IDW) computes a weighted
average,

Ẑ(s0) =
∑n

i=1 w(si)Z(si)∑n
i=1 w(si)

,

where weights for observations are computed according to their distance to
the interpolation location,

w(si) = ||si − s0||−p,

194 8 Interpolation and Geostatistics

with || · || indicating Euclidean distance and p an inverse distance weight-
ing power, defaulting to 2. If s0 coincides with an observation location, the
observed value is returned to avoid infinite weights.

The inverse distance power determines the degree to which the nearer
point(s) are preferred over more distant points; for large values IDW converges
to the one-nearest-neighbour interpolation. It can be tuned, for example us-
ing cross validation (Sect. 8.6.1). IDW can also be used within local search
neighbourhoods (Sect. 8.5.5).
> library(gstat)

> idw.out <- idw(zinc ~ 1, meuse, meuse.grid, idp = 2.5)

[inverse distance weighted interpolation]

> as.data.frame(idw.out)[1:5,]

var1.pred var1.var x y

1 701.9621 NA 181180 333740

2 799.9616 NA 181140 333700

3 723.5780 NA 181180 333700

4 655.3131 NA 181220 333700

5 942.0218 NA 181100 333660

The output variable is called var1.pred, and the var1.var values are NA because
inverse distance does not provide prediction error variances.

Inverse distance interpolation results usually in maps that are very similar
to kriged maps when a variogram with no or a small nugget is used. In contrast
to kriging, by only considering distances to the prediction location it ignores
the spatial configuration of observations; this may lead to undesired effects
if the observation locations are strongly clustered. Another difference is that
weights are guaranteed to be between 0 and 1, resulting in interpolated values
never outside the range of observed values.

8.3.2 Linear Regression

For spatial prediction using simple linear models, we can use the R function
lm:
> zn.lm <- lm(log(zinc) ~ sqrt(dist), meuse)

> meuse.grid$pred <- predict(zn.lm, meuse.grid)

> meuse.grid$se.fit <- predict(zn.lm, meuse.grid, se.fit = TRUE)$se.fit

Alternatively, the predict method used here can provide the prediction or
confidence intervals for a given confidence level. Alternatively, we can use the
function krige in gstat for this,
> meuse.lm <- krige(log(zinc) ~ sqrt(dist), meuse, meuse.grid)

[ordinary or weighted least squares prediction]

that in this case does not krige as no variogram is specified, but uses linear
regression.

Used in this form, the result is identical to that of lm. However, it can
also be used to predict with regression models that are refitted within local

8.4 Estimating Spatial Correlation: The Variogram 195

neighbourhoods around a prediction location (Sect. 8.5.5) or provide mean
predicted values for spatial areas (Sect. 8.5.6). The variance it returns is the
prediction error variance when predicting for points or the estimation error
variance when used for blocks.

A special form of linear regression is obtained when polynomials of spatial
coordinates are used for predictors, for example for a second-order polynomial

> meuse.tr2 <- krige(log(zinc) ~ 1, meuse, meuse.grid,

+ degree = 2)

[ordinary or weighted least squares prediction]

This form is called trend surface analysis.
It is possible to use lm for trend surface analysis, for example for the second-

order trend with a formula using I to treat powers and products ‘as is’:

> lm(log(zinc) ~ I(x^2) + I(y^2) + I(x * y) + x + y, meuse)

or the short form

> lm(log(zinc) ~ poly(x, y, 2), meuse)

It should be noted that for lm, the first form does not standardise coordinates,
which often yields huge numbers when powered, and that the second form does
standardise coordinates in such a way that it cannot be used in a subsequent
predict call with different coordinate ranges. Also note that trend surface
fitting is highly sensitive to outlying observations. Another place to look for
trend surface analysis is function surf.ls in package spatial.

8.4 Estimating Spatial Correlation: The Variogram

In geostatistics the spatial correlation is modelled by the variogram instead
of a correlogram or covariogram, largely for historical reasons. Here, the word
variogram will be used synonymously with semivariogram. The variogram
plots semivariance as a function of distance.

In standard statistical problems, correlation can be estimated from a scat-
terplot, when several data pairs {x, y} are available. The spatial correlation
between two observations of a variable z(s) at locations s1 and s2 cannot be
estimated, as only a single pair is available. To estimate spatial correlation
from observational data, we therefore need to make stationarity assumptions
before we can make any progress. One commonly used form of stationarity
is intrinsic stationarity, which assumes that the process that generated the
samples is a random function Z(s) composed of a mean and residual

Z(s) = m + e(s), (8.1)

with a constant mean
E(Z(s)) = m (8.2)

196 8 Interpolation and Geostatistics

and a variogram defined as

γ(h) =
1
2
E(Z(s) − Z(s + h))2. (8.3)

Under this assumption, we basically state that the variance of Z is constant,
and that spatial correlation of Z does not depend on location s, but only on
separation distance h. Then, we can form multiple pairs {z(si), z(sj)} that
have (nearly) identical separation vectors h = si −sj and estimate correlation
from them. If we further assume isotropy, which is direction independence of
semivariance, we can replace the vector h with its length, ||h||.

Under this assumption, the variogram can be estimated from Nh sample
data pairs z(si), z(si + h) for a number of distances (or distance intervals)
h̃j by

γ̂(h̃j) =
1

2Nh

Nh∑
i=1

(Z(si) − Z(si + h))2, ∀h ∈ h̃j (8.4)

and this estimate is called the sample variogram.
A wider class of models is obtained when the mean varies spatially, and

can, for example be modelled as a linear function of known predictors Xj(s),
as in

Z(s) =
p∑

j=0

Xj(s)βj + e(s) = Xβ + e(s), (8.5)

with Xj(s) the known spatial regressors and βj unknown regression coeffi-
cients, usually containing an intercept for which X0(s) ≡ 1. The Xj(s) form
the columns of the n × (p + 1) design matrix X, β is the column vector with
p + 1 unknown coefficients.

For varying mean models, stationarity properties refer to the residual e(s),
and the sample variogram needs to be computed from estimated residuals.

8.4.1 Exploratory Variogram Analysis

A simple way to acknowledge that spatial correlation is present or not is
to make scatter plots of pairs Z(si) and Z(sj), grouped according to their
separation distance hij = ||si − sj ||. This is done for the meuse data set in
Fig. 8.2, by

> hscat(log(zinc) ~ 1, meuse, (0:9) * 100)

where the strip texts indicate the distance classes, and sample correlations are
shown in each panel.

A second way to explore spatial correlation is by plotting the variogram
and the variogram cloud. The variogram cloud is obtained by plotting all
possible squared differences of observation pairs (Z(si)−Z(sj))2 against their
separation distance hij . One such variogram cloud, obtained by

> library(gstat)

> variogram(log(zinc) ~ 1, meuse, cloud = TRUE)

8.4 Estimating Spatial Correlation: The Variogram 197

lagged scatterplots

log(zinc)

lo
g(

zi
nc

)

5.0
5.5
6.0
6.5
7.0
7.5

5.0 5.5 6.0 6.5 7.0 7.5

r = 0.722

(0,100]
r = 0.595

(100,200]

5.0 5.5 6.0 6.5 7.0 7.5

r = 0.392
(200,300]

r = 0.257
(300,400]

r = 0.18
(400,500]

5.0
5.5
6.0
6.5
7.0
7.5r = 0.0962

(500,600]

5.0
5.5
6.0
6.5
7.0
7.5 r = 0.0177

(600,700]

5.0 5.5 6.0 6.5 7.0 7.5

r = −0.0604
(700,800]

r = −0.0797
(800,900]

Fig. 8.2. Lagged scatter plot for the log-zinc data in the meuse data set

is plotted in Fig. 8.3 (top). The plot shows a lot of scatter, as could be ex-
pected: when Z(s) follows a Gaussian distribution, (Z(si)−Z(sj))2 follows a
χ2(1) distribution. It does show, however, some increase of maximum values
for distances increasing up to 1,000 m.

Essentially, the sample variogram plot of (8.4) obtained by

> plot(variogram(log(zinc) ~ 1, meuse))

is nothing but a plot of averages of semivariogram cloud values over distance
intervals h; it is shown in Fig. 8.3, bottom. It smooths the variation in the
variogram cloud and provides an estimate of semivariance (8.3), although
Stein (1999) discourages this approach.

The ~ 1 defines a single constant predictor, leading to a spatially constant
mean coefficient, in accordance with (8.2); see p. 26 for a presentation of
formula objects.

As any point in the variogram cloud refers to a pair of points in the data set,
the variogram cloud can point us to areas with unusual high or low variability.
To do that, we need to select a subset of variogram cloud points. In

> sel <- plot(variogram(zinc ~ 1, meuse, cloud = TRUE),

+ digitize = TRUE)

> plot(sel, meuse)

198 8 Interpolation and Geostatistics

dist

ga
m

m
a 0

1
2

3
4

cloud

500 1000 1500

57

299

419

457
547

533 574
564 589

543 500

477
452

457 4

sample variogram

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Fig. 8.3. Variogram cloud (top) and sample variogram (bottom) for log-zinc data;
numbers next to symbols refer to the value Nh in (8.4)

the user is asked to digitise an area in the variogram cloud plot after the
first command. The second command plots the selected point pairs on the
observations map. Figure 8.4 shows the output plots of such a session. The
point pairs with largest semivariance at short distances were selected, because
they indicate the areas with the strongest gradients. The map shows that these
areas are not spread randomly: they connect the maximum values closest to
the Meuse river with values usually more inland. This can be an indication
of non-stationarity or of anisotropy. Log-transformation or detrending may
remove this effect, as we see later.

In case of outlying observations, extreme variogram cloud values are easily
identified to find the outliers. These may need removal, or else robust measures
for the sample variogram can be computed by passing the logical argument
cressie=TRUE to the variogram function call (Cressie, 1993).

A sample variogram γ̂(h) always contains a signal that results from the
true variogram γ(h) and a sampling error, due to the fact that Nh and s
are not infinite. To verify whether an increase in semivariance with distance
could possibly be attributed to chance, we can compute variograms from the
same data, after randomly re-assigning measurements to spatial locations.
If the sample variogram falls within the (say 95%) range of these random
variograms, complete spatial randomness of the underlying process may be a

8.4 Estimating Spatial Correlation: The Variogram 199

Fig. 8.4. Interactively selected point pairs on the variogram cloud (left) and map
of selected point pairs (right)

Fig. 8.5. Sample variogram (bold) compared to 100 variograms for randomly re-
allocated data (grey lines)

plausible hypothesis. Figure 8.5 shows an example of such a plot for the log
zinc data; here the hypothesis of absence of spatial correlation seems unlikely.
In general, however, concluding or even assuming that an underlying process is
completely spatially uncorrelated is quite unrealistic for real, natural processes.
A common case is that the spatial correlation is difficult to infer from sample
data, because of their distribution, sample size, or spatial configuration. In
certain cases spatial correlation is nearly absent.

200 8 Interpolation and Geostatistics

8.4.2 Cutoff, Lag Width, Direction Dependence

Although the command

> plot(variogram(log(zinc) ~ 1, meuse))

simply computes and plots the sample variogram, it does make a number of
decisions by default. It decides that direction is ignored: point pairs are
merged on the basis of distance, not direction. An alternative is, for example
to look in four different angles, as in

> plot(variogram(log(zinc) ~ 1, meuse, alpha = c(0, 45,

+ 90, 135))),

see Fig. 8.7. Directions are now divided over their principal direction, e.g.,
any point pair between 22.5◦ and 67.5◦ is used for the 45◦ panel. You might
want to split into a finer direction subdivision, for example passing alpha

= seq(0,170,10), but then the noise component of resulting sample vari-
ograms will increase, as the number of point pairs for each separate estimate
decreases.

A similar issue is the cutoff distance, which is the maximum distance up
to which point pairs are considered and the width of distance interval over
which point pairs are averaged in bins.

The default value gstat uses for the cutoff value is one third of the largest
diagonal of the bounding box (or cube) of the data. Just as for time series
data autocorrelations are never computed for lags farther than half the series
length, there is little point in computing semivariances for long distances other
than mere curiosity: wild oscillations usually show up that reveal little about
the process under study. Good reasons to decrease the cutoff may be when
a local prediction method is foreseen, and only semivariances up to a rather
small distance are required. In this case, the modelling effort, and hence the
computing of sample variograms should be limited to this distance (e.g. twice
the radius of the planned search neighbourhood).

For the interval width, gstat uses a default of the cutoff value divided by 15.
Usually, these default values will result in some initial overview of the spatial
correlation. Choosing a smaller interval width will result in more detail, as
more estimates of γ(h) appear, but also in estimates with more noise, as Nh

inevitably decreases. It should be noted that apparent local fluctuations of
consecutive γ̂(h) values may still be attributed to sampling error. The errors
γ̂(hi) − γ(hi) and γ̂(hj) − γ(hj) will be correlated, because ˆγ(hi) and ˆγ(hj)
usually share a large number of common points used to form pairs.

The default cutoff and interval width values may not be appropriate at
all, and can be overridden, for example by

> plot(variogram(log(zinc) ~ 1, meuse, cutoff = 1000, width =

50))

The distance vector does not have to be cut in regular intervals; one can
specify each interval by

8.4 Estimating Spatial Correlation: The Variogram 201

> variogram(log(zinc) ~ 1, meuse, boundaries = c(0, 50,

+ 100, seq(250, 1500, 250)))

which is especially useful for data sets that have much information on short
distance variability: it allows one to zoom in on the short distance variogram
without revealing irrelevant details for the longer distances.

8.4.3 Variogram Modelling

The variogram is often used for spatial prediction (interpolation) or simu-
lation of the observed process based on point observations. To ensure that
predictions are associated with non-negative prediction variances, the matrix
with semivariance values between all observation points and any possible pre-
diction point needs to be non-negative definite. For this, simply plugging in
sample variogram values from (8.4) is not sufficient. One common way is to
infer a parametric variogram model from the data. A non-parametric way, us-
ing smoothing and cutting off negative frequencies in the spectral domain, is
given in Yao and Journel (1998); it will not be discussed here.

The traditional way of finding a suitable variogram model is to fit a para-
metric model to the sample variogram (8.4). An overview of the basic vari-
ogram models available in gstat is obtained by

> show.vgms()

> show.vgms(model = "Mat", kappa.range = c(0.1, 0.2, 0.5,

+ 1, 2, 5, 10), max = 10)

where the second command gives an overview of various models in the Matérn
class.

In gstat, valid variogram models are constructed by using one or combina-
tions of two or more basic variogram models. Variogram models are derived
from data.frame objects, and are built as follows:

> vgm(1, "Sph", 300)

model psill range

1 Sph 1 300

> vgm(1, "Sph", 300, 0.5)

model psill range

1 Nug 0.5 0

2 Sph 1.0 300

> v1 <- vgm(1, "Sph", 300, 0.5)

> v2 <- vgm(0.8, "Sph", 800, add.to = v1)

> v2

model psill range

1 Nug 0.5 0

2 Sph 1.0 300

3 Sph 0.8 800

202 8 Interpolation and Geostatistics

> vgm(0.5, "Nug", 0)

model psill range

1 Nug 0.5 0

and so on. Each component (row) has a model type (‘Nug’, ‘Sph’, ...), followed
by a partial sill (the vertical extent of the model component) and a range
parameter (the horizontal extent). Nugget variance can be defined in two
ways, because it is almost always present. It reflects usually measurement error
and/or micro-variability. Note that gstat uses range parameters, for example
for the exponential model with partial sill c and range parameter a

γ(h) = c(1 − e−h/a).

This implies that for this particular model the practical range, the value at
which this model reaches 95% of its asymptotic value, is 3a; for the Gaussian
model the practical range is

√
3a. A list of model types is obtained by

> vgm()

short long

1 Nug Nug (nugget)

2 Exp Exp (exponential)

3 Sph Sph (spherical)

4 Gau Gau (gaussian)

5 Exc Exclass (Exponential class)

6 Mat Mat (Matern)

7 Cir Cir (circular)

8 Lin Lin (linear)

9 Bes Bes (bessel)

10 Pen Pen (pentaspherical)

11 Per Per (periodic)

12 Hol Hol (hole)

13 Log Log (logarithmic)

14 Pow Pow (power)

15 Spl Spl (spline)

16 Err Err (Measurement error)

17 Int Int (Intercept)

Not all of these models are equally useful, in practice. Most practical studies
have so far used exponential, spherical, Gaussian, Matérn, or power models,
with or without a nugget, or a combination of those.

For weighted least squares fitting a variogram model to the sample vari-
ogram (Cressie, 1985), we need to take several steps:

1. Choose a suitable model (such as exponential, ...), with or without nugget
2. Choose suitable initial values for partial sill(s), range(s), and possibly

nugget
3. Fit this model, using one of the fitting criteria.

For the variogram obtained by

8.4 Estimating Spatial Correlation: The Variogram 203

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

500 1000 1500

Fig. 8.6. Sample variogram (plus) and fitted model (dashed line)

> v <- variogram(log(zinc) ~ 1, meuse)

> plot(v)

and shown in Fig. 8.6, the spherical model looks like a reasonable choice.
Initial values for the variogram fit are needed for fit.variogram, because for
the spherical model (and many other models) fitting the range parameter
involves non-linear regression. The following fit works:
> fit.variogram(v, vgm(1, "Sph", 800, 1))

model psill range

1 Nug 0.05065923 0.0000

2 Sph 0.59060463 896.9976

but if we choose initial values too far off from reasonable values, as in
> fit.variogram(v, vgm(1, "Sph", 10, 1))

model psill range

1 Nug 1 0

2 Sph 1 10

the fit will not succeed. To stop execution in an automated fitting script, a
construct like
> v.fit <- fit.variogram(v, vgm(1, "Sph", 10, 1))

> if (attr(v.fit, "singular")) stop("singular fit")

will halt the procedure on this fitting problem.
The fitting method uses non-linear regression to fit the coefficients. For

this, a weighted sum of square errors
∑p

j=1 wj(γ(h) − γ̂(h))2, with γ(h) the
value according to the parametric model, is minimised. The optimisation
routine alternates the following two steps until convergence: (i) a direct fit
over the partial sills, and (ii) non-linear optimising of the range parameter(s)
given the last fit of partial sills. The minimised criterion is available as

> attr(v.fit, "SSErr")

[1] 9.011194e-06

204 8 Interpolation and Geostatistics

Table 8.1. Values for argument fit.method in function fit.variogram

fit.method Weight

1 Nj

2 Nj/{γ(hj)}2

6 1
7 Nj/h2

j

Different options for the weights wj are given in Table 8.1, the default value
chosen by gstat is 7. Two things should be noted: (i) for option 2, the weights
change after each iteration, which may confuse the optimisation routine, and
(ii) for the linear variogram with no nugget, option 7 is equivalent to option
2. Option 7 is default as it seems to work in many cases; it will, however, give
rise to spurious fits when a sample semivariance estimate for distance (very
close to) zero gives rise to an almost infinite weight. This may happen when
duplicate observations are available.

An alternative approach to fitting variograms is by visual fitting, the so-
called eyeball fit. Package geoR provides a graphical user interface for inter-
actively adjusting the parameters:

> library(geoR)

> v.eye <- eyefit(variog(as.geodata(meuse["zinc"]), max.dist = 1500))

> ve.fit <- as.vgm.variomodel(v.eye[[1]])

The last function converts the model saved in v.eye to a form readable
by gstat.

Typically, visual fitting will minimise |γ(h)− γ̂(h)| with emphasis on short
distance/small γ(h) values, as opposed to a weighted squared difference, used
by most numerical fitting. An argument to prefer visual fitting over numerical
fitting may be that the person who fits has knowledge that goes beyond the
information in the data. This may for instance be related to information about
the nugget effect, which may be hard to infer from data when sample loca-
tions are regularly spread. Information may be borrowed from other studies or
derived from measurement error characteristics for a specific device. In that
case, one could, however, also consider partial fitting, by keeping, for example
the nugget to a fixed value.

Partial fitting of variogram coefficients can be done with gstat. Suppose
we know for some reason that the partial sill for the nugget model (i.e. the
nugget variance) is 0.06, and we want to fit the remaining parameters, then
this is done by

> fit.variogram(v, vgm(1, "Sph", 800, 0.06), fit.sills = c(FALSE,

+ TRUE))

model psill range

1 Nug 0.0600000 0.0000

2 Sph 0.5845836 923.0066

8.4 Estimating Spatial Correlation: The Variogram 205

Alternatively, the range parameter(s) can be fixed using argument fit.ranges.
Maximum likelihood fitting of variogram models does not need the sample

variogram as intermediate form, as it fits a model directly to a quadratic
form of the data, that is the variogram cloud. REML (restricted maximum
likelihood) fitting of only partial sills, not of ranges, can be done using gstat
function fit.variogram.reml:

> fit.variogram.reml(log(zinc) ~ 1, meuse, model = vgm(0.6,

+ "Sph", 800, 0.06))

model psill range

1 Nug 0.02011090 0

2 Sph 0.57116195 800

Full maximum likelihood or restricted maximum likelihood fitting of vari-
ogram models, including the range parameters, can be done using function
likfit in package geoR, or with function fitvario in package RandomFields.
Maximum likelihood fitting is optimal under the assumption of a Gaussian
random field, and can be very time consuming for larger data sets.

8.4.4 Anisotropy

Anisotropy may be modelled by defining a range ellipse instead of a circular
or spherical range. In the following example
> v.dir <- variogram(log(zinc) ~ 1, meuse, alpha = (0:3) *

+ 45)

> v.anis <- vgm(0.6, "Sph", 1600, 0.05, anis = c(45, 0.3))

> plot(v.dir, v.anis)

the result of which is shown in Fig. 8.7, for four main directions. The fitted
model has a range in the principal direction (45◦, NE) of 1,600, and of 0.3 ×
1,600 = 480 in the minor direction (135◦).

When more measurement information is available, one may consider plot-
ting a variogram map, as in

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

0.8

1.0

500 1000 1500

0

500 1000 1500

45

500 1000 1500

90

500 1000 1500

135

Fig. 8.7. Directional sample variogram (plus) and fitted model (dashed line) for
four directions (0 is North, 90 is East)

206 8 Interpolation and Geostatistics

> plot(variogram(log(zinc) ~ 1, meuse, map = TRUE, cutoff = 1000,

+ width = 100))

which bins h vectors in square grid cells over x and y, meaning that distance
and direction are shown in much more detail. Help is available for the plotting
function plot.variogramMap.

Package gstat does not provide automatic fitting of anisotropy parameters.
Function likfit in geoR does, by using (restricted) maximum likelihood.

8.4.5 Multivariable Variogram Modelling

We use the term multivariable geostatistics here for the case where multiple
dependent spatial variables are analysed jointly. The case where the trend of
a single dependent variable contains more than a constant only is not called
multivariable in this sense, and will be treated in Sect. 8.5.

The main tool for estimating semivariances between different variables is
the cross variogram, defined for collocated1 data as

γij(h) = E[(Zi(s) − Zi(s + h))(Zj(s) − Zj(s + h))]

and for non-collocated data as

γij(h) = E[(Zi(s) − mi)(Zj(s) − mj)],

with mi and mj the means of the respective variables. Sample cross variograms
are the obvious sums over the available pairs or cross pairs, in the line of (8.4).

As multivariable analysis may involve numerous variables, we need to start
organising the available information. For that reason, we collect all the ob-
servation data specifications in a gstat object, created by the function gstat.
This function does nothing else than ordering (and actually, copying) infor-
mation needed later in a single object. Consider the following definitions of
four heavy metals:

> g <- gstat(NULL, "logCd", log(cadmium) ~ 1, meuse)

> g <- gstat(g, "logCu", log(copper) ~ 1, meuse)

> g <- gstat(g, "logPb", log(lead) ~ 1, meuse)

> g <- gstat(g, "logZn", log(zinc) ~ 1, meuse)

> g

data:

logCd : formula = log(cadmium)`~`1 ; data dim = 155 x 14

logCu : formula = log(copper)`~`1 ; data dim = 155 x 14

logPb : formula = log(lead)`~`1 ; data dim = 155 x 14

logZn : formula = log(zinc)`~`1 ; data dim = 155 x 14

> vm <- variogram(g)

> vm.fit <- fit.lmc(vm, g, vgm(1, "Sph", 800, 1))

> plot(vm, vm.fit)

1 Each observation location has all variables measured.

8.4 Estimating Spatial Correlation: The Variogram 207

distance

se
m

iv
ar

ia
nc

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500 1000 1500

logCd.logZn

0.
0

0.
1

0.
2

0.
3

0.
4

logCu.logZn
0.

0
0.

2
0.

4
0.

6

500 1000 1500

logPb.logZn

0.
0

0.
2

0.
4

0.
6

logZn

0.
0

0.
2

0.
4

0.
6

0.
8

logCd.logPb
0.

0
0.

1
0.

2
0.

3

logCu.logPb

0.
0

0.
2

0.
4

0.
6

logPb

0.
0

0.
2

0.
4

0.
6

logCd.logCu

0.
0

0.
1

0.
2

0.
3

logCu

0.
0

0.
5

1.
0

1.
5

2.
0

logCd

Fig. 8.8. Direct variograms (diagonal) and cross variograms (off-diagonal) along
with fitted linear model of coregionalization (dashed line)

the plot of which is shown in Fig. 8.8. By default, variogram when passing a
gstat object computes all direct and cross variograms, but this can be turned
off. The function fit.lmc fits a linear model of co-regionalization, which is a
particular model that needs to have identical model components (here nugget,
and spherical with range 800), and needs to have positive definite partial sill
matrices, to ensure non-negative prediction variances when used for spatial
prediction (cokriging).

As the variograms in Fig. 8.8 indicate, the variables have a strong cross
correlation. Because these variables are collocated, we could compute direct
correlations:

> cor(as.data.frame(meuse)[c("cadmium", "copper", "lead",

+ "zinc")])

cadmium copper lead zinc

cadmium 1.0000000 0.9254499 0.7989466 0.9162139

copper 0.9254499 1.0000000 0.8183069 0.9082695

lead 0.7989466 0.8183069 1.0000000 0.9546913

zinc 0.9162139 0.9082695 0.9546913 1.0000000

which confirm this, but ignore spatial components. For non-collocated data,
the direct correlations may be hard to compute.

208 8 Interpolation and Geostatistics

The fit.lmc function fits positive definite coefficient matrices by first fitting
models individually (while fixing the ranges) and then replacing non-positive
definite coefficient matrices by their nearest positive definite approximation,
taking out components that have a negative eigenvalue. When eigenvalues of
exactly zero occur, a small value may have to be added to the direct variogram
sill parameters; use the correct.diagonal argument for this.

Variables do not need to have a constant mean but can have a trend
function specified, as explained in Sect. 8.4.6.

8.4.6 Residual Variogram Modelling

Residual variograms are calculated by default when a more complex model
for the trend is used, for example as in

> variogram(log(zinc) ~ sqrt(dist), meuse)

where the trend is simple linear (Fig. 8.1), for example reworking (8.5) to

log(Z(s)) = β0 +
√

D(s)β1 + e(s),

with D(s) the distance to the river. For defining trends, the full range of R
formulas can be used: the right-hand side may contain factors, in which case
trends are calculated with respect to the factor level means, and may contain
interactions of all sorts; see p. 26 for explanation on S formula syntax.

By default, the residuals gstat uses are ordinary least squares residuals
(i.e. regular regression residuals), meaning that for the sake of estimating
the trend, observations are considered independent. To honour a dependence
structure present, generalised least squares residuals can be calculated instead.
For this, a variogram model to define the covariance structure is needed. In
the following example

> f <- log(zinc) ~ sqrt(dist)

> vt <- variogram(f, meuse)

> vt.fit <- fit.variogram(vt, vgm(1, "Exp", 300, 1))

> vt.fit

model psill range

1 Nug 0.05712231 0.0000

2 Exp 0.17641559 340.3201

> g.wls <- gstat(NULL, "log-zinc", f, meuse, model = vt.fit,

+ set = list(gls = 1))

> (variogram(g.wls)$gamma - vt$gamma)/mean(vt$gamma)

[1] 1.133887e-05 -6.800894e-05 -1.588582e-04 -2.520913e-04

[5] -5.461007e-05 -1.257573e-04 2.560629e-04 1.509185e-04

[9] 4.812184e-07 -5.292472e-05 -2.998868e-04 2.169712e-04

[13] -1.771773e-04 1.872195e-04 3.095021e-05

8.5 Spatial Prediction 209

it is clear that the difference between the two approaches is marginal, but this
does not need to be the case in other examples.

For multivariable analysis, gstat objects can be formed where the trend
structure can be specified uniquely for each variable. If multivariable residuals
are calculated using weighted least squares, this is done on a per-variable basis,
ignoring cross correlations for trend estimation.

8.5 Spatial Prediction

Spatial prediction refers to the prediction of unknown quantities Z(s0), based
on sample data Z(si) and assumptions regarding the form of the trend of Z
and its variance and spatial correlation.

Suppose we can write the trend as a linear regression function, as in (8.5).
If the predictor values for s0 are available in the 1 × p row-vector x(s0), V is
the covariance matrix of Z(s) and v the covariance vector of Z(s) and Z(s0),
then the best linear unbiased predictor of Z(s0) is

Ẑ(s0) = x(s0)β̂ + v′V −1(Z(s) − Xβ̂), (8.6)

with β̂ = (X ′V −1X)−1 X ′V −1Z(s) the generalized least squares estimate of
the trend coefficients and where X ′ is the transpose of the design matrix
X. The predictor consists of an estimated mean value for location s0, plus a
weighted mean of the residuals from the mean function, with weights v′V −1,
known as the simple kriging weights.

The predictor (8.6) has prediction error variance

σ2(s0) = σ2
0 − v′V −1v + δ(X ′V −1X)−1δ′, (8.7)

where σ2
0 is var(Z(s0)), or the variance of the Z process, and where δ =

x(s0) − v′V −1X. The term v′V −1v is zero if v is zero, that is if all observa-
tions are uncorrelated with Z(s0), and equals σ2

0 when s0 is identical to an
observation location. The third term of (8.7) is the contribution of the esti-
mation error var(β̂ − β) = (X ′V −1X)−1 to the prediction (8.6): it is zero if
s0 is an observation location, and increases, for example when x(s0) is more
distant from X, as when we extrapolate in the space of X.

8.5.1 Universal, Ordinary, and Simple Kriging

The instances of this best linear unbiased prediction method with the number
of predictors p > 0 are usually called universal kriging. Sometimes the term
kriging with external drift is used for the case where p = 1 and X does not
include coordinates.

A special case is that of (8.2), for which p = 0 and X0 ≡ 1. The corre-
sponding prediction is called ordinary kriging.

210 8 Interpolation and Geostatistics

Trend coefficients given? "simple"

"universal"

Sequential Indicator (co)simulation

Sequential Gaussian (co)simulation

(local) trend surface prediction

Inverse distance weighted interpolation

indicators?

Yes

Simulations?

Variograms?

Yes

No

Simple (co)krigingTrend coefficients given?

Trend functions given?

Yes

Yes

No

No

Yes

No

No

Yes

No
Yes

No
Universal (co)kriging

Ordinary (co)krigingTrend has only intercept?

Fig. 8.9. Decision tree for the gstat predict method

Simple kriging is obtained when, for whatever reason, β is a priori assumed
to be known. The known β can then be substituted for β̂ in (8.6). The simple
kriging variance is obtained by omitting the third term, which is associated
with the estimation error of β̂ in (8.7).

Applying these techniques is much more straightforward than this compli-
cated jargon suggests, as an example will show:

> lz.sk <- krige(log(zinc) ~ 1, meuse, meuse.grid, v.fit,

+ beta = 5.9)

[using simple kriging]

> lz.ok <- krige(log(zinc) ~ 1, meuse, meuse.grid, v.fit)

[using ordinary kriging]

> lz.uk <- krige(log(zinc) ~ sqrt(dist), meuse, meuse.grid,

+ vt.fit)

[using universal kriging]

Clearly, the krige command chooses the kriging method itself, depending on
the information it is provided with: are trend coefficients given? is the trend
constant or more complex? How this is done is shown in the decision tree of
Fig. 8.9.

8.5.2 Multivariable Prediction: Cokriging

The kriging predictions equations can be simply extended to obtain multivari-
able prediction equations, see, for example Hoef and Cressie (1993); Pebesma
(2004). The general idea is that multiple variables may be cross correlated,
meaning that they exhibit not only autocorrelation but that the spatial vari-
ability of variable A is correlated with variable B, and can therefore be used
for its prediction, and vice versa. Typically, both variables are assumed to

8.5 Spatial Prediction 211

be measured on a limited set of locations, and the interpolation addresses
unmeasured locations.

The technique is not limited to two variables. For each prediction location,
multivariable prediction for q variables yields a q × 1 vector with a prediction
for each variable, and a q × q matrix with prediction error variances and
covariances from which we can obtain the error correlations:
> cok.maps <- predict(vm.fit, meuse.grid)

Linear Model of Coregionalization found. Good.

[using ordinary cokriging]

> names(cok.maps)

[1] "logCd.pred" "logCd.var" "logCu.pred"

[4] "logCu.var" "logPb.pred" "logPb.var"

[7] "logZn.pred" "logZn.var" "cov.logCd.logCu"

[10] "cov.logCd.logPb" "cov.logCu.logPb" "cov.logCd.logZn"

[13] "cov.logCu.logZn" "cov.logPb.logZn"

Clearly, only the unique matrix elements are stored; to get an overview of the
prediction error variance and covariances, a utility function wrapping spplot

is available; the output of
> spplot.vcov(cok.maps)

is given in Fig. 8.10.
Before the cokriging starts, gstat reports success in finding a Linear Model

of Coregionalization (LMC). This is good, as it will assure non-negative co-
kriging variances. If this is not the case, for example because the ranges differ,
> vm2.fit <- vm.fit

> vm2.fit$model[[3]]$range = c(0, 900)

> predict(vm2.fit, meuse.grid)

will stop with an error message. Stopping on this check can be avoided by
> vm2.fit$set <- list(nocheck = 1)

> x <- predict(vm2.fit, meuse.grid)

Now checking for Cauchy-Schwartz inequalities:

variogram(var0,var1) passed Cauchy-Schwartz

variogram(var0,var2) passed Cauchy-Schwartz

variogram(var1,var2) passed Cauchy-Schwartz

variogram(var0,var3) passed Cauchy-Schwartz

variogram(var1,var3) passed Cauchy-Schwartz

variogram(var2,var3) passed Cauchy-Schwartz

[using ordinary cokriging]

> names(as.data.frame(x))

[1] "logCd.pred" "logCd.var" "logCu.pred"

[4] "logCu.var" "logPb.pred" "logPb.var"

[7] "logZn.pred" "logZn.var" "cov.logCd.logCu"

[10] "cov.logCd.logPb" "cov.logCu.logPb" "cov.logCd.logZn"

[13] "cov.logCu.logZn" "cov.logPb.logZn" "x"

[16] "y"

212 8 Interpolation and Geostatistics

logCd.var

cov.logCd.logCu logCu.var

cov.logCd.logPb cov.logCu.logPb logPb.var

cov.logCd.logZn cov.logCu.logZn cov.logPb.logZn logZn.var

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fig. 8.10. Cokriging variances (diagonal) and covariances (off-diagonal)

> any(as.data.frame(x)[c(2, 4, 6, 8)] < 0)

[1] FALSE

which does check for pairwise Cauchy-Schwartz inequalities, that is |γij(h)| ≤√
γi(h)γj(h), but will not stop on violations. Note that this latter check is

not sufficient to guarantee positive variances. The final check confirms that
we actually did not obtain any negative variances, for this particular case.

8.5.3 Collocated Cokriging

Collocated cokriging is a special case of cokriging, where a secondary variable
is available at all prediction locations, and instead of choosing all observations

8.5 Spatial Prediction 213

of the secondary variable or those in a local neighbourhood, we restrict the
secondary variable search neighbourhood to this single value on the prediction
location. For instance, consider log(zinc) as primary and dist as secondary
variable:

> g.cc <- gstat(NULL, "log.zinc", log(zinc) ~ 1, meuse,

+ model = v.fit)

> meuse.grid$distn <- meuse.grid$dist - mean(meuse.grid$dist) +

+ mean(log(meuse$zinc))

> vd.fit <- v.fit

> vov <- var(meuse.grid$distn)/var(log(meuse$zinc))

> vd.fit$psill <- v.fit$psill * vov

> g.cc <- gstat(g.cc, "distn", distn ~ 1, meuse.grid, nmax = 1,

+ model = vd.fit, merge = c("log.zinc", "distn"))

> vx.fit <- v.fit

> vx.fit$psill <- sqrt(v.fit$psill * vd.fit$psill) * cor(meuse$dist,

+ log(meuse$zinc))

> g.cc <- gstat(g.cc, c("log.zinc", "distn"), model = vx.fit)

> x <- predict(g.cc, meuse.grid)

Linear Model of Coregionalization found. Good.

[using ordinary cokriging]

Figure 8.11 shows the predicted maps using ordinary kriging, collocated cok-
riging and universal cokriging, using log(zinc) ∼ sqrt(dist) as trend.

8.5.4 Cokriging Contrasts

Cokriging error covariances can be of value when we want to compute func-
tions of multiple predictions. Suppose Z1 is measured on time 1, and Z2 on
time 2, and both are non-collocated. When we want to estimate the change
Z2 − Z1, we can use the estimates for both moments, but for the error in
the change we need in addition the prediction error covariance. The function
get.contr helps computing the expected value and error variance for any lin-
ear combination (contrast) in a set of predictors, obtained by cokriging. A
demo in gstat,

> demo(pcb)

gives a full space-time cokriging example that shows how time trends can be
estimated for PCB-138 concentration in sea floor sediment, from four consec-
utive five-yearly rounds of monitoring, using universal cokriging.

8.5.5 Kriging in a Local Neighbourhood

By default, all spatial predictions method provided by gstat use all available
observations for each prediction. In many cases, it is more convenient to use
only the data in the neighbourhood of the prediction location. The reasons for
this may be statistical or computational. Statistical reasons include that the

214 8 Interpolation and Geostatistics

collocated ordinary

universal

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Fig. 8.11. Predictions for collocated cokriging, ordinary kriging, and universal
kriging

hypothesis of constant mean or mean function should apply locally, or that
the assumed knowledge of the variogram is only valid up to a small distance.
Computational issues may involve both memory and speed: kriging for n data
requires solving an n× n system. For large n (say more than 1,000) this may
be too slow, and discarding anything but the closest say 100 observations may
not result in notable different predictions.

It should be noted that for global kriging the matrix V needs to be decom-
posed only once, after which the result is re-used for each prediction location
to obtain V −1v. Decomposing a linear system of equations is an O(n2) op-
eration, solving another system O(n). Therefore, if a neighbourhood size is
chosen slightly smaller than the global neighbourhood, the computation time
may even increase, compared to using a global neighbourhood.

8.5 Spatial Prediction 215

Neighbourhoods in gstat are defined by passing the arguments nmax, nmin,
and/or maxdist to functions like predict, krige, or gstat. Arguments nmax and
nmin define a neighbourhood size in terms of number of nearest points, maxdist
specifies a circular search range to select point. They may be combined: when
less than nmin points are found in a search radius, a missing value is generated.

For finding neighbourhood selections fast, gstat first builds a PR bucket
quadtree, or for three-dimensional data octree search index (Hjaltason and
Samet, 1995). With this index it finds any neighbourhood selection with only
a small number of distance evaluations.

8.5.6 Change of Support: Block Kriging

Despite the fact that no measurement can ever be taken on something that
has size zero, in geostatistics, by default observations Z(si) are treated as
being observed on point location. Kriging a value with a physical size equal
to that of the observations is called point kriging. In contrast, block kriging
predicts averages of larger areas or volumes. The term block kriging originates
from mining, where early geostatistics was developed (Journel and Huijbregts,
1978). In mines, predictions based on bore hole data had to be made for mine-
able units, which tended to have a block shape. Change of support occurs when
predictions are made for a larger physical support based on small physical sup-
port observations. There is no particular reason why the larger support needs
to have a rectangular shape, but it is common.

Besides the practical relevance to the mining industry, a consideration in
many environmental applications has been that point kriging usually exhibits
large prediction errors. This is due to the larger variability in the observations.
When predicting averages over larger areas, much of the variability (i.e. that
within the blocks) averages out and block mean values have lower prediction
errors, while still revealing spatial patterns if the blocks are not too large. In
environmental problems, legislation may be related to means or medians over
larger areas, rather than to point values.

Block kriging (or other forms of prediction for blocks) can be obtained by
gstat in three ways:

1. For regular blocks, by specifying a block size
2. For irregular but constant ‘blocks’, by specifying points that discretise the

irregular form
3. For blocks or areas of varying size, by passing an object of class Spa-

tialPolygons to the newdata argument (i.e. replacing meuse.grid)

Ordinary block kriging for blocks of size 40 × 40 is simply obtained by

> lz.ok <- krige(log(zinc) ~ 1, meuse, meuse.grid, v.fit,

+ block = c(40, 40))

[using ordinary kriging]

216 8 Interpolation and Geostatistics

For a circular shape with radius 20, centred on the points of meuse.grid, one
could select points on a regular grid within a circle:

> xy <- expand.grid(x = seq(-20, 20, 4), y = seq(-20, 20,

+ 4))

> xy <- xy[(xy$x^2 + xy$y^2) <= 20^2,]

> lz.ok <- krige(log(zinc) ~ 1, meuse, meuse.grid, v.fit,

+ block = xy)

[using ordinary kriging]

For block averages over varying regions, the newdata argument, usually a
grid, can be replaced by a polygons object. Suppose meuse.polygons contains
polygons for which we want to predict block averages, then this is done by

> lz.pols <- krige(log(zinc) ~ 1, meuse, meuse.polygons,

+ v.fit)

To discretise each (top level) Polygons object, coordinates that discretize the
polygon are obtained by

> spsample(polygon, n = 500, type = "regular", offset = c(0.5,

+ 0.5))

meaning that a regular discretisation is sought with approximately 500 points.
These default arguments to spsample can be modified by altering the sps.args

argument to predict.gstat; spsample is described on p. 118.
A much less efficient way to obtain block kriging predictions and predic-

tion errors is to use Gaussian conditional simulation (Sect. 8.7) over a fine
grid, calculate block means from each realisation, and obtain the mean and
variance from a large number of realisations. In the limit, this should equal
the analytical block kriging prediction.

When instead of a block average a non-linear spatial aggregation is re-
quired, such as a quantile value of points within a block, or the area fraction
of a block where points exceed a threshold (Sect. 6.6), the simulation path is
the more natural approach.

8.5.7 Stratifying the Domain

When a categorical variable is available that splits the area of interest in a
number of disjoint areas, for example based on geology, soil type, land use or
some other factor, we might want to apply separate krigings to the different
units. This is called stratified kriging. The reason for doing kriging per-class
may be that the covariance structure (semivariogram) is different for the dif-
ferent classes. In contrast to universal kriging with a categorical predictor, no
correlation is assumed between residuals from different classes.

The example assumes there is a variable part.a, which partitions the area
in two sub-areas, where part.a is 0 and where it is 1. First we can try to find
out in which grid cells the observations lie:

8.5 Spatial Prediction 217

> meuse$part.a <- idw(part.a ~ 1, meuse.grid,

+ meuse, nmax = 1)$var1.pred

[inverse distance weighted interpolation]

here, any interpolation may do, as we basically use the first nearest neighbour
as predictor. A more robust approach may be to use the overlay method,

> meuse$part.a <- meuse.grid$part.a[overlay(meuse.grid,

+ meuse)]

because it will ignore observations not covered by the grid, when present.
Next, we can perform kriging for each of the sub-domains, store them in x1

and x2, and merge the result using rbind in their non-spatial representation:

> x1 <- krige(log(zinc) ~ 1, meuse[meuse$part.a == 0,],

+ meuse.grid[meuse.grid$part.a == 0,], model = vgm(0.548,

+ "Sph", 900, 0.0654), nmin = 20, nmax = 40, maxdist = 1000)

[using ordinary kriging]

> x2 <- krige(log(zinc) ~ 1, meuse[meuse$part.a == 1,],

+ meuse.grid[meuse.grid$part.a == 1,], model = vgm(0.716,

+ "Sph", 900), nmin = 20, nmax = 40, maxdist = 1000)

[using ordinary kriging]

> lz.stk <- rbind(as.data.frame(x1), as.data.frame(x2))

> coordinates(lz.stk) <- c("x", "y")

> lz.stk <- as(x, "SpatialPixelsDataFrame")

> spplot(lz.stk["var1.pred"], main = "stratified kriging predictions")

8.5.8 Trend Functions and their Coefficients

For cases of exploratory data analysis or analysis of specific regression diagnos-
tics, it may be of interest to limit prediction to the trend component x(s0)β̂,
ignoring the prediction of the residual, that is ignoring the second term in the
right-hand side of (8.6). This can be accomplished by setting argument BLUE

= TRUE to predict.gstat:

> g.tr <- gstat(formula = log(zinc) ~ sqrt(dist), data = meuse,

+ model = v.fit)

> predict(g.tr, meuse[1,])

[using universal kriging]

coordinates var1.pred var1.var

1 (181072, 333611) 6.929517 4.964793e-33

> predict(g.tr, meuse[1,], BLUE = TRUE)

[generalized least squares trend estimation]

coordinates var1.pred var1.var

1 (181072, 333611) 6.862085 0.06123864

218 8 Interpolation and Geostatistics

The first output yields the observed value (with zero variance), the second
yields the generalised least squares trend component.

If we want to do significance testing of regression coefficients under a full
model with spatially correlated residuals, we need to find out what the esti-
mated regression coefficients and their standard errors are. For this, we can
use gstat in a debug mode, in which case it will print a lot of information
about intermediate calculations to the screen; just try

> predict(g, meuse[1,], BLUE = TRUE, debug = 32)

but this does not allow saving the actual coefficients as data in R. Another
way is to ‘fool’ the prediction mode with a specific contrast on the regression
coefficients, for example the vector x(s0) = (0, 1), such that x(s0)β̂ = 0β̂0 +
1β̂1 = β̂1. Both regression coefficient estimates are obtained by

> meuse$Int <- rep(1, 155)

> g.tr <- gstat(formula = log(zinc) ~ -1 + Int + sqrt(dist),

+ data = meuse, model = v.fit)

> rn <- c("Intercept", "beta1")

> df <- data.frame(Int = c(0, 1), dist = c(1, 0), row.names = rn)

> spdf <- SpatialPointsDataFrame(SpatialPoints(matrix(0,

+ 2, 2)), df)

> spdf

coordinates Int dist

Intercept (0, 0) 0 1

beta1 (0, 0) 1 0

> predict(g.tr, spdf, BLUE = TRUE)

[generalized least squares trend estimation]

coordinates var1.pred var1.var

1 (0, 0) -2.471753 0.20018883

2 (0, 0) 6.953173 0.06633691

The Int variable is a ‘manual’ intercept to replace the automatic intercept,
and the -1 in the formula removes the automatic intercept. This way, we
can control it and give it the zero value. The predictions now contain the
generalised least squares estimates of the regression model.

8.5.9 Non-Linear Transforms of the Response Variable

For predictor variables, a non-linear transform simply yields a new variable
and one can proceed as if nothing has happened. Searching for a good trans-
form, such as using sqrt(dist) instead of direct dist values, may help in
approaching the relationship with a straight line. For dependent variables this
is not the case: because statistical expectation (‘averaging’) is a linear opera-
tion, E(g(X)) = g(E(X)) only holds if g(·) is a linear operator. This means
that if we compute kriging predictors for zinc on the log scale, we do not

8.5 Spatial Prediction 219

obtain the expected zinc concentration by taking the exponent of the kriging
predictor.

A large class of monotonous transformations is provided by the Box–Cox
family of transformations, which take a value λ:

f(y, λ) =
{

(yλ − 1)/λ if λ �= 0,
ln(y) if λ = 0.

A likelihood profile plot for lambda is obtained by the boxcox method in the
package bundle MASS. For example, the plot resulting from

> library(MASS)

> boxcox(zinc ~ sqrt(dist), data = as.data.frame(meuse))

suggests that a Box–Cox transform with a slightly negative value for λ, for
example λ = −0.2, might be somewhat better than log-transforming for those
who like their data normal.

Yet another transformation is the normal score transform (Goovaerts,
1997) computed by the function qqnorm, defined as

> meuse$zinc.ns <- qqnorm(meuse$zinc, plot.it = FALSE)$x

Indeed, the resulting variable has mean zero, variance close to 1 (exactly one
if n is large), and plots a straight line on a normal probability plot. So simple
as this transform is, so complex can the back-transform be: it requires linear
interpolation between the sample points, and for the extrapolation of values
outside the data range the cited reference proposes several different models
for tail distributions, all with different coefficients. There seems to be little
guidance as how to choose between them based on sample data. It should be
noted that back-transforming values outside the data range is not so much a
problem with interpolation, as it is with simulation (Sect. 8.7).

Indicator kriging is obtained by indicator transforming a continuous vari-
able, or reducing a categorical variable to a binary variable. An example for
the indicator whether zinc is below 500 ppm is

> ind.f <- I(zinc < 500) ~ 1

> ind.fit <- fit.variogram(variogram(ind.f, meuse), vgm(1,

+ "Sph", 800, 1))

> ind.kr <- krige(ind.f, meuse, meuse.grid, ind.fit)

[using ordinary kriging]

> summary(ind.kr$var1.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.03472 0.47490 0.80730 0.70390 0.94540 1.08800

Clearly, this demonstrates the difficulty of interpreting the resulting estimates
of ones and zeros as probabilities, as one has to deal with negative values and
values larger than one.

When it comes to non-linear transformations such as the log transform, the
question whether to transform or not to transform is often a hard one. On the

220 8 Interpolation and Geostatistics

one hand, it introduces the difficulties mentioned; on the other hand, trans-
formation solves problems like negative predictions for non-negative variables,
and, for example heteroscedasticity: for non-negative variables the variability
is larger for areas with larger values, which opposes the stationarity assump-
tion where variability is independent from location.

When a continuous transform is taken, such as the log-transform or the
Box–Cox transform, it is possible to back-transform quantiles using the inverse
transform. So, under log-normal assumptions the exponent of the kriging mean
on the log scale is an estimate of the median on the working scale. From back-
transforming a large number of quantiles, the mean value and variance may
be worked out.

8.5.10 Singular Matrix Errors

Kriging cannot deal with duplicate observations, or observations that share
the same location, because they are perfectly correlated, and lead to singular
covariance matrices V , meaning that V −1v has no unique solution. Obtaining
errors due to a singular matrix is a common case.

> meuse.dup <- rbind(as.data.frame(meuse)[1,], as.data.frame(meuse))

> coordinates(meuse.dup) = ~x + y

> krige(log(zinc) ~ 1, meuse.dup, meuse[1,], v.fit)

will result in the output:

[using ordinary kriging]

"chfactor.c", line 130: singular matrix in function LDLfactor()

Error in predict.gstat(g, newdata=newdata, block=block, nsim=nsim:

LDLfactor

which points to the C function where the actual error occurred (LDLfactor).
The most common case where this happens is when duplicate observations
are present in the data set. Duplicate observations can be found by

> zd <- zerodist(meuse.dup)

> zd

[,1] [,2]

[1,] 1 2

> krige(log(zinc) ~ 1, meuse.dup[-zd[, 1],], meuse[1,

+], v.fit)

[using ordinary kriging]

coordinates var1.pred var1.var

1 (181072, 333611) 6.929517 1.963167e-33

which tells that observations 1 and 2 have identical location; the third com-
mand removes the first of the pair. Near-duplicate observations are found by
increasing the zero argument of function zerodist to a very small threshold.

Other common causes for singular matrices are the following:

8.6 Model Diagnostics 221

• The use of variogram models that cause observations to have nearly perfect
correlation, despite the fact that they do not share the same location,
for example from vgm(0, "Nug", 0) or vgm(1, "Gau", 1e20). The Gaussian
model is always a suspect if errors occur when it is used; adding a small
nugget often helps.

• Using a regression model with perfectly correlated variables; note that,
for example a global regression model may lead to singularity in a local
neighbourhood where a predictor may be constant and correlate perfectly
with the intercept, or otherwise perfect correlation occurs.

Stopping execution on singular matrices is usually best: the cause needs
to be found and somehow resolved. An alternative is to skip those locations
and continue. For instance,

> setL <- list(cn_max = 1e+10)

> krige(log(zinc) ~ 1, meuse.dup, meuse[1,], v.fit, set = setL)

[using ordinary kriging]

coordinates var1.pred var1.var

1 (181072, 333611) NA NA

checks whether the estimated condition number for V and X ′V −1X exceeds
1010, in which case NA values are generated for prediction. Larger condition
numbers indicate that a matrix is closer to singular. This is by no means a
solution. It will also report whether V or X ′V −1X are singular; in the latter
case the cause is more likely related to collinear regressors, which reside in X.

Near-singularity may not be picked up, and can potentially lead to dra-
matically bad results: predictions that are orders of magnitude different from
the observation data. The causes should be sought in the same direction as
real singularity. Setting the cn_max value may help finding where this occurs.

8.6 Model Diagnostics

The model diagnostics we have seen so far are fitted and residual plots (for
linear regression models), spatial identification of groups of points in the vari-
ogram cloud, visual and numerical inspection of variogram models, and visual
and numerical inspection of kriging results. Along the way, we have seen many
model decisions that needed to be made; the major ones being the following:

• Possible transformation of the dependent variable
• The form of the trend function
• The cutoff, lag width, and possibly directional dependence for the sample

variogram
• The variogram model type
• The variogram model coefficient values, or fitting method
• The size and criterion to define a local neighbourhood

222 8 Interpolation and Geostatistics

and we have seen fairly little statistical guidance as to which choices are better.
To some extent we can ‘ask’ the data what a good decision is, and for this
we may use cross validation. We see that there are some model choices that
do not seem very important, and others that cross validation simply cannot
inform us about.

8.6.1 Cross Validation Residuals

Cross validation splits the data set into two sets: a modelling set and a vali-
dation set. The modelling set is used for variogram modelling and kriging on
the locations of the validation set, and then the validation measurements can
be compared to their predictions. If all went well, cross validation residuals
are small, have zero mean, and no apparent structure.

How should we choose or isolate a set for validation? A possibility is to
randomly partition the data in a model and test set. Let us try this for the
meuse data set, splitting it in 100 observations for modelling and 55 for testing:
> sel100 <- sample(1:155, 100)

> m.model <- meuse[sel100,]

> m.valid <- meuse[-sel100,]

> v100.fit <- fit.variogram(variogram(log(zinc) ~ 1, m.model),

+ vgm(1, "Sph", 800, 1))

> m.valid.pr <- krige(log(zinc) ~ 1, m.model, m.valid,

+ v100.fit)

[using ordinary kriging]

> resid.kr <- log(m.valid$zinc) - m.valid.pr$var1.pred

> summary(resid.kr)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.79990 -0.18240 -0.03922 -0.01881 0.19210 1.06900

> resid.mean <- log(m.valid$zinc) - mean(log(m.valid$zinc))

> R2 <- 1 - sum(resid.kr^2)/sum(resid.mean^2)

> R2

[1] 0.717017

which indicates that kriging prediction is a better predictor than the mean,
with an indicative R2 of 0.72. Running this analysis again will result in dif-
ferent values, as another random sample is chosen. Also note that no visual
verification that the variogram model fit is sensible has been applied. A map
with cross validation residuals can be obtained by
> m.valid.pr$res <- resid.kr

> bubble(m.valid.pr, "res")

A similar map is shown for 155 residuals in Fig. 8.12. Here, symbol size denotes
residual size, with symbol area proportional to absolute value.

To use the data to a fuller extent, we would like to use all observations
to create a residual once; this may be used to find influential observations. It
can be done by replacing the first few lines in the example above with

8.6 Model Diagnostics 223

> nfold <- 3

> part <- sample(1:nfold, 155, replace = TRUE)

> sel <- (part != 1)

> m.model <- meuse[sel,]

> m.valid <- meuse[-sel,]

and next define sel = (part != 2), etc. Again, the random splitting brings
in a random component to the outcomes. This procedure is threefold cross
validation, and it can be easily extended to n-fold cross validation. When n
equals the number of observations, the procedure is called leave-one-out cross
validation.

A more automated way to do this is provided by the gstat functions
krige.cv for univariate cross validation and gstat.cv for multivariable cross
validation:

> v.fit <- vgm(0.59, "Sph", 874, 0.04)

> cv155 <- krige.cv(log(zinc) ~ 1, meuse, v.fit, nfold = 5)

[using ordinary kriging]

[using ordinary kriging]

[using ordinary kriging]

[using ordinary kriging]

[using ordinary kriging]

> bubble(cv155, "residual", main = "log(zinc): 5-fold CV residuals")

the result of which is shown in Fig. 8.12. It should be noted that these functions
do not re-fit variograms for each fold; usually a variogram is fit on the complete
data set, and in that case validation residuals are not completely independent
from modelling data, as they already did contribute to the variogram model
fitting.

8.6.2 Cross Validation z-Scores

The krige.cv object returns more than residuals alone:

> summary(cv155)

Object of class SpatialPointsDataFrame

Coordinates:

min max

x 178605 181390

y 329714 333611

Is projected: NA

proj4string : [NA]

Number of points: 155

Data attributes:

var1.pred var1.var observed residual

Min. :4.808 Min. :0.1102 Min. :4.727 Min. :-0.955422

1st Qu.:5.380 1st Qu.:0.1519 1st Qu.:5.288 1st Qu.:-0.218794

224 8 Interpolation and Geostatistics

log(zinc): 5−fold CV residuals

−0.955

−0.219
−0.01

0.214

1.612

Fig. 8.12. Cross validation residuals for fivefold cross validation; symbol size denotes
residual magnitude, positive residuals indicate under-prediction

Median :5.881 Median :0.1779 Median :5.787 Median :-0.010007

Mean :5.887 Mean :0.1914 Mean :5.886 Mean :-0.001047

3rd Qu.:6.333 3rd Qu.:0.2145 3rd Qu.:6.514 3rd Qu.: 0.213743

Max. :7.257 Max. :0.5370 Max. :7.517 Max. : 1.611694

zscore fold

Min. :-2.270139 Min. :1.000

1st Qu.:-0.508470 1st Qu.:2.000

Median :-0.023781 Median :3.000

Mean : 0.001421 Mean :2.987

3rd Qu.: 0.498811 3rd Qu.:4.000

Max. : 3.537729 Max. :5.000

the variable fold shows to which fold each record belonged, and the variable
zscore is the z-score, computed as

8.6 Model Diagnostics 225

zi =
Z(si) − Ẑ[i](si)

σ[i](si)
,

with Ẑ[i](si) the cross validation prediction for si, and σ[i](si) the correspond-
ing kriging standard error. In contrast to standard residuals the z-score takes
the kriging variance into account: it is a standardised residual, and if the var-
iogram model is correct, the z-score should have mean and variance values
close to 0 and 1. If, in addition, Z(s) follows a normal distribution, so should
the z-score do.

8.6.3 Multivariable Cross Validation

Multivariable cross validation is obtained using the gstat.cv function:

> g.cv <- gstat.cv(g, nmax = 40)

Here, the neighbourhood size is set to the nearest 40 observations for computa-
tional reasons. With multivariable cross validation, two additional parameters
need be considered:

• remove.all = FALSE By default only the first variable is cross-validated,
and all other variables are used to their full extent for prediction on the
validation locations; if set to TRUE, also secondary data at the validation
locations are removed.

• all.residuals = FALSE By default only residuals are computed and re-
turned for the primary variable; if set to TRUE, residuals are computed and
returned for all variables.

In a truly multivariable setting, where there is no hierarchy between the dif-
ferent variables to be considered, both should be set to TRUE.

8.6.4 Limitations to Cross Validation

Cross validation can be useful to find artefacts in data, but it should be used
with caution for confirmatory purposes: one needs to be careful not to conclude
that our (variogram and regression) model is correct if cross validation does
not lead to unexpected findings. It is for instance not good at finding what is
not in the data.

As an example, the Meuse data set does not contain point pairs with a
separation distance closer than 40. Therefore, the two variogram models

> v1.fit <- vgm(0.591, "Sph", 897, 0.0507)

> v2.fit <- vgm(0.591, "Sph", 897, add.to = vgm(0.0507,

+ "Sph", 40))

that only differ with respect to the spatial correlation at distances smaller
than 40 m yield identical cross validation results:

> set.seed(13331)

> cv155.1 <- krige.cv(log(zinc) ~ 1, meuse, v1.fit, nfold = 5)

226 8 Interpolation and Geostatistics

[using ordinary kriging]

[using ordinary kriging]

[using ordinary kriging]

[using ordinary kriging]

[using ordinary kriging]

> set.seed(13331)

> cv155.2 <- krige.cv(log(zinc) ~ 1, meuse, v2.fit, nfold = 5)

[using ordinary kriging]

[using ordinary kriging]

[using ordinary kriging]

[using ordinary kriging]

[using ordinary kriging]

> summary(cv155.1$residual - cv155.2$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 0 0 0 0

Note that the set.seed(13331) was used here to force identical assignments of
the otherwise random folding. When used for block kriging, the behaviour of
the variogram at the origin is of utmost importance, and the two models yield
strongly differing results. As an example, consider block kriging predictions
at the meuse.grid cells:

> b1 <- krige(log(zinc) ~ 1, meuse, meuse.grid, v1.fit,

+ block = c(40, 40))$var1.var

[using ordinary kriging]

> b2 <- krige(log(zinc) ~ 1, meuse, meuse.grid, v2.fit,

+ block = c(40, 40))$var1.var

[using ordinary kriging]

> summary((b1 - b2)/b1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.4313 -0.2195 -0.1684 -0.1584 -0.1071 0.4374

where some kriging variances drop, but most increase, up to 30% when using
the variogram without nugget instead of the one with a nugget. The decision
which variogram to choose for distances shorter than those available in the
data is up to the analyst, and matters.

8.7 Geostatistical Simulation

Geostatistical simulation refers to the simulation of possible realisations of a
random field, given the specifications for that random field (e.g. mean struc-
ture, residual variogram, intrinsic stationarity) and possibly observation data.

8.7 Geostatistical Simulation 227

Conditional simulation produces realisations that exactly honour observed
data at data locations, unconditional simulations ignore observations and only
reproduce means and prescribed variability.

Geostatistical simulation is fun to do, to see how much (or little) realisa-
tions can vary given the model description and data, but it is a poor means of
quantitatively communicating uncertainty: many realisations are needed and
there is no obvious ordering in which they can be viewed. They are, however,
often needed when the uncertainty of kriging predictions is, for example input
to a next level of analysis, and spatial correlation plays a role. An example
could be the use of rainfall fields as input to spatially distributed rainfall-
runoff models: interpolated values and their variances are of little value, but
running the rainfall-runoff model with a large number of simulated rainfall
fields may give a realistic assertion of the uncertainty in runoff, resulting from
uncertainty in the rainfall field.

Calculating runoff given rainfall and catchment characteristic can be seen
as a non-linear spatial aggregation process. Simpler non-linear aggregations
are, for example for a given area or block the fraction of the variable that
exceeds a critical limit, the 90th percentile within that area, or the actual area
where (or its size distribution for which) a measured concentration exceeds
a threshold. Simulation can give answers in terms of predictions as well as
predictive distributions for all these cases. Of course, the outcomes can never
be better than the degree to which the simulation model reflects reality.

8.7.1 Sequential Simulation

For simulating random fields, package gstat only provides the sequential simu-
lation algorithm (see, e.g. Goovaerts (1997) for an explanation), and provides
this for Gaussian simulation and indicator simulation, possibly multivariable,
optionally with simulation of trend components, and optionally for block mean
values. Package RandomFields provides a large number of other simulation al-
gorithms.

Sequential simulation proceeds as follows; following a random path through
the simulation locations, it repeats the following steps:

1. Compute the conditional distribution given data and previously simulated
values, using simple kriging

2. Draw a value from this conditional distribution
3. Add this value to the data set
4. Go to the next unvisited location, and go back to 1

until all locations have been visited. In step 2, either the Gaussian distribution
is used or the indicator kriging estimates are used to approximate a condi-
tional distribution, interpreting kriging estimates as probabilities (after some
fudging!).

Step 1 of this algorithm will become the most computationally expen-
sive when all data (observed and previously simulated) are used. Also, as the

228 8 Interpolation and Geostatistics

number of simulation nodes is usually much larger than the number of ob-
servations, the simulation process will slow down more and more when global
neighbourhoods are used. To obtain simulations with a reasonable speed, we
need to set a maximum to the neighbourhood. This is best done with the
nmax argument, as spatial data density increases when more and more sim-
ulated values are added. For simulation we again use the functions krige or
predict.gstat; the argument nsim indicates how many realisations are re-
quested:

> lzn.sim <- krige(log(zinc) ~ 1, meuse, meuse.grid, v.fit,

+ nsim = 6, nmax = 40)

drawing 6 GLS realisations of beta...

[using conditional Gaussian simulation]

> spplot(lzn.sim)

the result of which is shown in Fig. 8.13. It should be noted that these realisa-
tions are created following a single random path, in which case the expensive
results (V −1v and the neighbourhood selection) can be re-used. Alternatively,
one could use six function calls, each with nsim = 1.

The simulation procedure above also gave the output line drawing 6 GLS

realisations of beta..., which confirms that prior to simulation of the field
for each realisation a trend vector (in this case a mean value only) is drawn

sim1 sim2 sim3

sim4 sim5 sim6

4

5

6

7

8

Fig. 8.13. Six realisations of conditional Gaussian simulation for log-zinc

8.7 Geostatistical Simulation 229

from the normal distribution with mean (X ′V −1X)−1X ′V −1Z(s) and vari-
ance (X ′V −1X)−1, that is the generalised least squares estimate and esti-
mation variance. This procedure leads to simulations that have mean and
variance equal to the ordinary or universal kriging mean and variance, and
that have residual spatial correlation according to the variogram prescribed
(Abrahamsen and Benth, 2001). For simulations that omit the simulation of
the trend coefficients, the vector β should be passed, for example as beta =

5.9 to the krige function, as with the simple kriging example. In that case,
the simulated fields will follow the simple kriging mean and variance.

8.7.2 Non-Linear Spatial Aggregation and Block Averages

Suppose the area shown in Fig. 8.14 is the target area for which we want to
know the fraction above a threshold; the area being available as a SpatialPoly-

gons object area. We can now compute the distribution of the areal fraction
above a cutoff of 500 ppm by simulation:

> nsim <- 1000

> cutoff <- 500

> grd <- overlay(meuse.grid, area.sp)

> sel.grid <- meuse.grid[!is.na(grd),]

> lzn.sim <- krige(log(zinc) ~ 1, meuse, sel.grid, v.fit,

+ nsim = nsim, nmax = 40)

drawing 1000 GLS realisations of beta...

[using conditional Gaussian simulation]

> res <- apply(as.data.frame(lzn.sim)[1:nsim], 2, function(x) mean(x >

+ log(cutoff)))

> hist(res, main = paste("fraction above", cutoff), xlab = NULL,

+ ylab = NULL)

0.5 0.6 0.7 0.8 0.9

25
0

15
0

50
0

Fig. 8.14. A non-rectangular area for which a non-linear aggregation is required
(left) and distribution of the areal fraction with zinc concentration above 500 ppm

230 8 Interpolation and Geostatistics

shown in the right-hand side of Fig. 8.14. Note that if we had been interested
in the probability of mean(x) > log(cutoff), which is a rather different issue,
then block kriging would have been sufficient:

> bkr <- krige(log(zinc) ~ 1, meuse, area.sp, v.fit)

[using ordinary kriging]

> 1 - pnorm(log(cutoff), bkr$var1.pred, sqrt(bkr$var1.var))

[1] 0.999879

Block averages can be simulated directly by supplying the block argument
to krige; simulating points and aggregating these to block means may be more
efficient because simulating blocks calls for the calculation of many block–
block covariances, which involves the computation of quadruple integrals.

8.7.3 Multivariable and Indicator Simulation

Multivariable simulation is as easy as cokriging, try

> cok.sims <- predict(vm.fit, meuse.grid, nsim = 1000)

after passing the nmax = 40, or something similar to the gstat calls used to
build up vm.fit (Sect. 8.4.5).

Simulation of indicators is done along the same lines. Suppose we want to
simulate soil class 1, available in the Meuse data set:

> table(meuse$soil)

1 2 3

97 46 12

> s1.fit <- fit.variogram(variogram(I(soil == 1) ~ 1, meuse),

+ vgm(1, "Sph", 800, 1))

> s1.sim <- krige(I(soil == 1) ~ 1, meuse, meuse.grid,

+ s1.fit, nsim = 6, indicators = TRUE, nmax = 40)

drawing six GLS realisations of beta... [using conditional

indicator simulation]

> spplot(s1.sim)

which is shown in Fig. 8.15.

8.8 Model-Based Geostatistics and Bayesian Approaches

Up to now, we have only seen kriging approaches where it was assumed that
the variogram model, fitted from sample data, is assumed to be known when
we do the kriging or simulation: any uncertainty about it is ignored. Diggle
et al. (1998) give an approach, based on linear mixed and generalized linear

8.9 Monitoring Network Optimization 231

sim1 sim2 sim3

sim4 sim5 sim6

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8.15. Six realisations of conditional indicator simulation for soil type 1

mixed models, to provide what they call model-based geostatistical predictions.
It incorporates the estimation error of the variogram coefficients.

When is uncertainty of the variogram an important issue? Obviously, when
the sample is small, or, for example when variogram modelling is problematic
due to the presence of extreme observations or data that come from a strongly
skewed distribution.

8.9 Monitoring Network Optimization

Monitoring costs money. Monitoring programs have to be designed, started,
stopped, evaluated, and sometimes need to be enlarged or shrunken. The
difficulty of finding optimal network designs is that a quantitative criterion
is often a priori not present. For example, should one focus on mean kriging
variances, or variance of some global mean estimator, or rather on the ability
to delineate a particular contour?

A very simple approach towards monitoring network optimization is to
find the point whose removal leads to the smallest increase in mean kriging
variance:

> m1 <- sapply(1:155, function(x) mean(krige(log(zinc) ~

+ 1, meuse[-x,], meuse.grid, v.fit)$var1.var))

> which(m1 == min(m1))

232 8 Interpolation and Geostatistics

which will point to observation 72 as the first candidate for removal. Looking
at the sorted magnitudes of change in mean kriging variance by

> plot(sort(m1))

will reveal that for several other candidate points their removal will have an
almost identical effect on the mean variance.

Another approach could be, for example to delineate say the 500 ppm
contour. We could, for example express the doubt about whether a location
is below or above 500 as the closeness of G((Ẑ(s0) − 500)/σ(s0)) to 0.5, with
G(·) the Gaussian distribution function.

> cutoff <- 1000

> f <- function(x) {

+ kr = krige(log(zinc) ~ 1, meuse[-x,], meuse.grid,

+ v.fit)

+ mean(abs(pnorm((kr$var1.pred - log(cutoff))/sqrt(kr$var1.var)) -

+ 0.5))

+ }

> m2 <- sapply(1:155, f)

> which(m2 == max(m2))

Figure 8.16 shows that different objectives lead to different candidate
points. Also, deciding based on the kriging variance alone results in an out-
come that is highly predictable from the points configuration alone: points in
the densest areas are candidate for removal.

For adding observation points, one could loop over a fixed grid and find
the point that increases the objective most; this is more work as the number

Fig. 8.16. Candidate points for removal. (Left) For mean kriging variance, (right)
for delineating the 1,000 ppm contour. (Open circles) 10% most favourite points,
(closed circles) 10% least favourite points

8.10 Other R Packages for Interpolation and Geostatistics 233

of options for addition are much larger than that for removal. Evaluating on
the kriging variance is not a problem, as the observation value does not affect
the kriging variance. For the second criterion, it does.

The problem when two or more points have to be added or removed jointly
becomes computationally very intensive, as the sequential solution (first the
best point, then the second best) is not necessarily equal to the joint solution,
for example which configuration of n points is best. Instead of an exhaustive
search a more clever optimisation strategy such as simulated annealing or a
genetic algorithm should be used.

Package fields has a function cover.design that finds a set of points on a
finite grid that minimises a geometric space-filling criterion

8.10 Other R Packages for Interpolation
and Geostatistics

8.10.1 Non-Geostatistical Interpolation

Other interpolation methods may be used, for example based on generalised
additive models or smoothers, such as given in package mgcv. Additive models
in coordinates without interaction will not yield rotation-invariant solutions,
but two-dimensional smoothing splines will. The interested reader is referred
to Wood (2006).

Package fields also provides a function Tps, for thin plate (smoothing)
splines. Package akima provides interpolation methods based on bilinear or
bicubic splines (Akima, 1978).

Package stinepack provides a ‘consistently well behaved method of inter-
polation based on piecewise rational functions using Stineman’s algorithm’
(Stineman, 1980).

An interpolation method that also has this property but that does take ob-
servation configuration into account is natural neighbour interpolation (Sibson,
1981), but this is not available in R.

None of the packages mentioned in this sub-section accept or return data
in one of the Spatial classes of package sp.

8.10.2 spatial

Package spatial is part of the VR bundle that comes with Venables and Ripley
(2002) and is probably one of the oldest spatial packages available in R. It pro-
vides calculation of spatial correlation using functions correlogram or vari-

ogram. It allows ordinary and universal point kriging over a grid for spherical,
exponential, and Gaussian covariance models. For universal kriging predic-
tors it only allows polynomials in the spatial coordinates. Function surf.gls

fits a trend surface (i.e. a polynomial in the coordinates) by generalised least
squares, and it has a predict method.

234 8 Interpolation and Geostatistics

8.10.3 RandomFields

RandomFields (version 1.3.30) offers sample variogram computation, vari-
ogram fitting by least squares or maximum likelihood or restricted maximum
likelihood. Simple and ordinary point kriging are provided, and unconditional
and conditional simulation using a large variety of modern simulation methods
different from sequential simulation, many of them based on spectral methods
and Fourier transforms; their abbreviated code is shown as column labels in
the table below; an explanation of them is available in the help for Print-

MethodList.
A large class of covariance functions was proved, shown as row labels in

the table below. Their functional form and literature references are found in
the help for PrintModelList:

> PrintModelList()

List of models

==============

[See also PrintMethodList()]

Circ cut intr TBM2 TBM3 spec drct nugg add hyp oth

bessel X - - - - X X - - - -

cauchy X X X X X - X - - - -

cauchytbm X - - + X - X - - - -

circular X - - + - - X - X - -

cone - - - - - - - - X - -

constant X - - X X - X - - - -

cubic X - - + X - X - - - -

cutoff X h - - - - X - - - -

dampedcosine X - - + X - X - - - -

exponential X X X X X X X - - X -

FD X - - - - - X - - - -

fractalB - - X - - - - - - - -

fractgauss X - - - - - X - - - -

gauss X - - + X X X - X - -

gencauchy X X X + X - X - - - -

gengneiting X - - + X - X - - - -

gneiting X - - + X - X - - - -

hyperbolic X - - + X - X - - - -

iacocesare X - - - - - X - - - -

lgd1 X - - + - - X - - - -

mastein X - - - - - X - - - -

nsst X - - + X - X - - - -

nsst2 X - - + X - X - - - -

nugget X o o o o o X X o o o

penta X - - + X - X - - - -

power X - - + X - X - - - -

qexponential X - - + X - X - - - -

spherical X - - X X - X - X - -

8.10 Other R Packages for Interpolation and Geostatistics 235

stable X X X + X - X - - - -

Stein X - h - - - X - - - -

steinst1 X - - - - - X - - - -

wave X - - - - X X - - - -

whittlematern X X X + X X X - - - -

Circ cut intr TBM2 TBM3 spec drct nugg add hyp oth

Legend:'-': method not available

'X': method available for at least some parameter values

'+': parts are evaluated only approximatively

'o': given method is ignored and an alternative one is used

'h': available only as internal model within the method

8.10.4 geoR and geoRglm

In addition to variogram estimation, variogram model function fitting using
least squares or (restricted) maximum likelihood (likfit), and ordinary and
universal point kriging, package geoR allows for Bayesian kriging (function
krige.bayes of (transformed) Gaussian variables). This requires the user to
specify priors for each of the variogram model parameters (but not for the
trend coefficients); krige.bayes will then compute the posterior kriging dis-
tribution. The function documentation points to a long list of documents
that describe the implementation details. The book by Diggle and Ribeiro Jr.
(2007) describes more details and gives worked examples.

Package geoR uses its own class for spatial data, called geodata. It contains
coercion method for point data in sp format, try, for example
> library(geoR)

> plot(variog(as.geodata(meuse["zinc"]), max.dist = 1500))

Package geoR also has an xvalid function for leave-one-out cross validation
that (optionally) allows for re-estimating model parameters (trend and var-
iogram coefficients) when leaving out each observation. It also provides the
eyefit, for interactive visual fitting of functions to sample variograms (see
Sect. 8.4.3).

Package geoRglm extends package geoR for binomial and Poisson processes,
and includes Bayesian and conventional kriging methods for trans-Gaussian
processes. It mostly uses MCMC approaches, and may be slow for larger data
sets.

8.10.5 fields

Package fields is an R package for curve and function fitting with an em-
phasis on spatial data. The main spatial prediction methods are thin plate
splines (function Tps) and kriging (function Krig and krig.image). The krig-
ing functions allow you to supply a covariance function that is written in
native code. Functions that are positive definite on a sphere (i.e. for unpro-
jected data) are available. Function cover.design is written for monitoring
network optimisation.

9

Areal Data and Spatial Autocorrelation

9.1 Introduction

Spatial data are often observed on polygon entities with defined boundaries.
The polygon boundaries are defined by the researcher in some fields of study,
may be arbitrary in others and may be administrative boundaries created
for very different purposes in others again. The observed data are frequently
aggregations within the boundaries, such as population counts. The areal en-
tities may themselves constitute the units of observation, for example when
studying local government behaviour where decisions are taken at the level
of the entity, for example setting local tax rates. By and large, though, areal
entities are aggregates, bins, used to tally measurements, like voting results
at polling stations. Very often, the areal entities are an exhaustive tessellation
of the study area, leaving no part of the total area unassigned to an entity. Of
course, areal entities may be made up of multiple geometrical entities, such
as islands belonging to the same county; they may also surround other areal
entities completely, and may contain holes, like lakes.

The boundaries of areal entities may be defined for some other purpose
than their use in data analysis. Postal code areas can be useful for analysis,
but were created to facilitate postal deliveries. It is only recently that national
census organisations have accepted that frequent, apparently justified, changes
to boundaries are a major problem for longitudinal analyses. In Sect. 5.1, we
discussed the concept of spatial support, which here takes the particular form
of the modifiable areal unit problem (Waller and Gotway, 2004, pp. 104–108).
Arbitrary areal unit boundaries are a problem if their modification could lead
to different results, with the case of political gerrymandering being a sobering
reminder of how changes in aggregation may change outcomes.1 They may also

1 The CRAN BARD package for automated redistricting and heuristic exploration
of redistricter revealed preference is an example of the use of R for studying this
problem.

238 9 Areal Data and Spatial Autocorrelation

get in the way of the analysis if the spatial scale or footprint of an underlying
data generating process is not matched by the chosen boundaries.

If data collection can be designed to match the areal entities to the data,
the influence of the choice of aggregates will be reduced. An example could be
the matching of labour market data to local labour markets, perhaps defined
by journeys to work. On the other hand, if we are obliged to use arbitrary
boundaries, often because there are no other feasible sources of secondary data,
we should be aware of potential difficulties. Such mismatches are among the
reasons for finding spatial autocorrelation in analysing areal aggregates; other
reasons include substantive spatial processes in which entities influence each
other by contagion, such as the adoption of similar policies by neighbours, and
model misspecification leaving spatially patterned information in the model
residuals. These causes of observed spatial autocorrelation can occur in com-
bination, making the correct identification of the actual spatial processes an
interesting undertaking.

A wide range of scientific disciplines have encountered spatial autocorre-
lation among areal entities, with the term ‘Galton’s problem’ used in several.
The problem is to establish how many effectively independent observations are
present, when arbitrary boundaries have been used to divide up a study area.
In his exchange with Tyler in 1889, Galton questioned whether observations of
marriage laws across areal entities constituted independent observations, since
they could just reflect a general pattern from which they had all descended.
So positive spatial dependence tends to reduce the amount of information
contained in the observations, because proximate observations can in part be
used to predict each other.

In Chap. 8, we have seen how distances on a continuous surface can be used
to structure spatial autocorrelation, for example with the variogram. Here we
will be concerned with areal entities that are defined as neighbours, for chosen
definitions of neighbours. On a continuous surface, all points are neighbours
of each other, though some may carry very little weight, because they are
very distant. On a tessellated surface, we can choose neighbour definitions
that partition the set of all entities (excluding observation i) into members or
non-members of the neighbour set of observation i. We can also decide to give
each neighbour relationship an equal weight, or vary the weights on the arcs
of the directed graph describing the spatial dependence.

The next two sections will cover the construction of neighbours and of
weights that can be applied to neighbourhoods. Once this important and often
demanding prerequisite is in place, we go on to look at ways of measuring
spatial autocorrelation, bearing in mind that the spatial patterning we find
may only indicate that our current model of the data is not appropriate.
This applies to areal units not fitting the data generation process, to missing
variables including variables with the wrong functional form, and differences
between our assumptions about the data and their actual distributions, often
shown as over-dispersion in count data. The modelling of areal data will be
dealt with in the next chapter, with extensions in Chap. 11.

9.2 Spatial Neighbours 239

360000

46
50

00
0

47
00

00
0

47
50

00
0

48
00

00
0

46
50

00
0

47
00

00
0

47
50

00
0

48
00

00
0

Binghampton

Ithaca

Cortland

Auburn

Syracuse Oneida

a)

Monarch Chemicals
IBM EndicottSinger

Nesco

GE Auburn

Solvent Savers
Smith Corona

Victory Plaza
Hadco

Morse Chain

Groton

b)

480000420000 360000 480000420000

Fig. 9.1. (a) Major cities in the eight-county upper New York State study area;
(b) locations of 11 inactive hazardous waste sites in the study area

While the tests build on models of spatial processes, we look at tests first,
and only subsequently move on to modelling. We will also be interested to show
how spatial autocorrelation can be introduced into independent data, so that
simulations can be undertaken. The 281 census tract data set for eight central
New York State counties featured prominently in Waller and Gotway (2004)
will be used in many of the examples,2 supplemented with tract boundaries
derived from TIGER 1992 and distributed by SEDAC/CIESIN. This file is
not identical with the boundaries used in the original source, but is very close
and may be re-distributed, unlike the version used in the book. The area has
an extent of about 160 km north–south and 120 km east–west; Fig. 9.1 shows
the major cities in the study area and the location of 11 hazardous waste sites.
The figures in Waller and Gotway (2004) include water bodies, which are not
present in this version of the tract boundaries, in which tract boundaries follow
the centre lines of lakes, rather than their shores.

9.2 Spatial Neighbours

Creating spatial weights is a necessary step in using areal data, perhaps just to
check that there is no remaining spatial patterning in residuals. The first step
is to define which relationships between observations are to be given a non-
zero weight, that is to choose the neighbour criterion to be used; the second is
to assign weights to the identified neighbour links. Trying to detect pattern in
maps of residuals visually is not an acceptable choice, although one sometimes
2 The boundaries have been projected from geographical coordinates to UTM

zone 18.

240 9 Areal Data and Spatial Autocorrelation

hears comments explaining the lack of formal analysis such as ‘they looked
random’, or alternatively ‘I can see the clusters’. Making the neighbours and
weights is, however, not easy to do, and so a number of functions are included
in the spdep package to help. Further functions are found in some ecology
packages, such as the ade4 package – this package also provides nb2neig and
neig2nb converters for inter-operability. The construction of spatial weights
is touched on by Cressie (1993, pp. 384–385), Schabenberger and Gotway
(2005, p. 18), Waller and Gotway (2004, pp. 223–225), Fortin and Dale (2005,
pp. 113–118), O’Sullivan and Unwin (2003, pp. 193–194) and Banerjee et al.
(2004, pp. 70–71). The paucity of treatments in the literature contrasts with
the strength of the prior information being introduced by the analyst at this
stage, and is why we have chosen to devote a more than proportionally large
part of the book to this topic, since analysing areal data is crucially dependent
on the choices made in constructing the spatial weights.

9.2.1 Neighbour Objects

In the spdep package, neighbour relationships between n observations are
represented by an object of class nb; the class is an old-style class as presented
on p. 24. It is a list of length n with the index numbers of neighbours of each
component recorded as an integer vector. If any observation has no neighbours,
the component contains an integer zero. It also contains attributes, typically
a vector of character region identifiers, and a logical value indicating whether
the relationships are symmetric. The region identifiers can be used to check for
integrity between the data themselves and the neighbour object. The helper
function card returns the cardinality of the neighbour set for each object, that
is, the number of neighbours; it differs from the application of length to the
list components because no-neighbour entries are coded as a single element
integer vector with the value of zero.

> library(spdep)

> library(rgdal)

> NY8 <- readOGR(".", "NY8_utm18")

> NY_nb <- read.gal("NY_nb.gal", region.id = row.names(as(NY8,

+ "data.frame")))

> summary(NY_nb)

Neighbour list object:

Number of regions: 281

Number of nonzero links: 1522

Percentage nonzero weights: 1.927534

Average number of links: 5.41637

Link number distribution:

1 2 3 4 5 6 7 8 9 10 11

6 11 28 45 59 49 45 23 10 3 2

9.2 Spatial Neighbours 241

6 least connected regions:

55 97 100 101 244 245 with 1 link

2 most connected regions:

34 82 with 11 links

> isTRUE(all.equal(attr(NY_nb, "region.id"), row.names(as(NY8,

+ "data.frame"))))

[1] TRUE

> plot(NY8, border = "grey60")

> plot(NY_nb, coordinates(NY8), pch = 19, cex = 0.6, add = TRUE)

Starting from the census tract contiguities used in Waller and Gotway
(2004) and provided as a DBF file on their website, a GAL format file has been
created and read into R– we return to the import and export of neighbours
on p. 255. Since we now have an nb object to examine, we can present the
standard methods for these objects. There are print, summary, plot, and other
methods; the summary method presents a table of the link number distribution,
and both print and summary methods report asymmetry and the presence of
no-neighbour observations; asymmetry is present when i is a neighbour of j
but j is not a neighbour of i. Figure 9.2 shows the complete neighbour graph
for the eight-county study area. For the sake of simplicity in showing how
to create neighbour objects, we work on a subset of the map consisting of
the census tracts within Syracuse, although the same principles apply to the
full data set. We retrieve the part of the neighbour list in Syracuse using the
subset method.

> Syracuse <- NY8[NY8$AREANAME == "Syracuse city",]

> Sy0_nb <- subset(NY_nb, NY8$AREANAME == "Syracuse city")

> isTRUE(all.equal(attr(Sy0_nb, "region.id"), row.names(as(Syracuse,

+ "data.frame"))))

[1] TRUE

> summary(Sy0_nb)

Neighbour list object:

Number of regions: 63

Number of nonzero links: 346

Percentage nonzero weights: 8.717561

Average number of links: 5.492063

Link number distribution:

1 2 3 4 5 6 7 8 9

1 1 5 9 14 17 9 6 1

1 least connected region:

164 with 1 link

1 most connected region:

136 with 9 links

242 9 Areal Data and Spatial Autocorrelation

360000 380000 400000 420000 440000 460000 480000

46
50

00
0

47
00

00
0

47
50

00
0

48
00

00
0

Fig. 9.2. Census tract contiguities, New York eight-county census tracts

9.2.2 Creating Contiguity Neighbours

We can create a copy of the same neighbours object for polygon contiguities
using the poly2nb function in spdep. It takes an object extending the Spa-

tialPolygons class as its first argument, and using heuristics identifies poly-
gons sharing boundary points as neighbours. It also has a snap argument, to
allow the shared boundary points to be a short distance from one another.

> class(Syracuse)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

> Sy1_nb <- poly2nb(Syracuse)

> isTRUE(all.equal(Sy0_nb, Sy1_nb, check.attributes = FALSE))

[1] TRUE

9.2 Spatial Neighbours 243

a) b)

Fig. 9.3. (a) Queen-style census tract contiguities, Syracuse; (b) Rook-style conti-
guity differences shown as thicker lines

As we can see, creating the contiguity neighbours from the Syracuse object
reproduces the neighbours from Waller and Gotway (2004). Careful examina-
tion of Fig. 9.2 shows, however, that the graph of neighbours is not planar,
since some neighbour links cross each other. By default, the contiguity condi-
tion is met when at least one point on the boundary of one polygon is within
the snap distance of at least one point of its neighbour. This relationship is
given by the argument queen=TRUE by analogy with movements on a chess-
board. So when three or more polygons meet at a single point, they all meet
the contiguity condition, giving rise to crossed links. If queen=FALSE, at least
two boundary points must be within the snap distance of each other, with the
conventional name of a ‘rook’ relationship. Figure 9.3 shows the crossed line
differences that arise when polygons touch only at a single point, compared
to the stricter rook criterion.

> Sy2_nb <- poly2nb(Syracuse, queen = FALSE)

> isTRUE(all.equal(Sy0_nb, Sy2_nb, check.attributes = FALSE))

[1] FALSE

If we have access to a GIS such as GRASS or ArcGIS™, we can export the
SpatialPolygonsDataFrame object and use the topology engine in the GIS to
find contiguities in the graph of polygon edges – a shared edge will yield the
same output as the rook relationship. Integration with GRASS was discussed
in Sect. 4.4, and functions in RArcInfo and the equivalent readOGR function
in rgdal for reading ArcGIS™ coverages in Sects. 4.2.2 and 4.2.13 can also be
used for retrieving rook neighbours.

This procedure does, however, depend on the topology of the set of poly-
gons being clean, which holds for this subset, but not for the full eight-county
data set. Not infrequently, there are small artefacts, such as slivers where
boundary lines intersect or diverge by distances that cannot be seen on plots,
3 A script to access ArcGIS™ coverages using Python and R(D)COM using readOGR

is on the book website.

244 9 Areal Data and Spatial Autocorrelation

but which require intervention to keep the geometries and data correctly as-
sociated. When these geometrical artefacts are present, the topology is not
clean, because unambiguous shared polygon boundaries cannot be found in
all cases; artefacts typically arise when data collected for one purpose are
combined with other data or used for another purpose. Topologies are usu-
ally cleaned in a GIS by ‘snapping’ vertices closer than a threshold distance
together, removing artefacts – for example, snapping across a river channel
where the correct boundary is the median line but the input polygons stop at
the channel banks on each side. The poly2nb function does have a snap argu-
ment, which may also be used when input data possess geometrical artefacts.

> library(spgrass6)

> writeVECT6(Syracuse, "SY0")

> contig <- vect2neigh("SY0")

> Sy3_nb <- sn2listw(contig)$neighbours

> isTRUE(all.equal(Sy3_nb, Sy2_nb, check.attributes = FALSE))

[1] TRUE

Similar approaches may also be used to read ArcGIS™ coverage data by
tallying the left neighbour and right neighbour arc indices with the polygons
in the data set, using either RArcInfo or rgdal.

In our Syracuse case, there are no exclaves or ‘islands’ belonging to the data
set, but not sharing boundary points within the snap distance. If the number of
polygons is moderate, the missing neighbour links may be added interactively
using the edit method for nb objects, and displaying the polygon background.
The same method may be used for removing links which, although contiguity
exists, may be considered void, such as across a mountain range.

9.2.3 Creating Graph-Based Neighbours

Continuing with irregularly located areal entities, it is possible to choose a
point to represent the polygon-support entities. This is often the polygon
centroid, which is not the average of the coordinates in each dimension, but
takes proper care to weight the component triangles of the polygon by area.
It is also possible to use other points, or if data are available, construct,
for example population-weighted centroids. Once representative points are
available, the criteria for neighbourhood can be extended from just contiguity
to include graph measures, distance thresholds, and k-nearest neighbours.

The most direct graph representation of neighbours is to make a Delaunay
triangulation of the points, shown in the first panel in Fig. 9.4. The neighbour
relationships are defined by the triangulation, which extends outwards to the
convex hull of the points and which is planar. Note that graph-based repre-
sentations construct the interpoint relationships based on Euclidean distance,
with no option to use Great Circle distances for geographical coordinates.
Because it joins distant points around the convex hull, it may be worthwhile

9.2 Spatial Neighbours 245

a) b)

c) d)

Fig. 9.4. (a) Delauney triangulation neighbours; (b) Sphere of influence neighbours;
(c) Gabriel graph neighbours; (d) Relative graph neighbours

to thin the triangulation as a Sphere of Influence (SOI) graph, removing links
that are relatively long. Points are SOI neighbours if circles centred on the
points, of radius equal to the points’ nearest neighbour distances, intersect in
two places (Avis and Horton, 1985).4

> coords <- coordinates(Syracuse)

> IDs <- row.names(as(Syracuse, "data.frame"))

> library(tripack)

> Sy4_nb <- tri2nb(coords, row.names = IDs)

> Sy5_nb <- graph2nb(soi.graph(Sy4_nb, coords), row.names = IDs)

> Sy6_nb <- graph2nb(gabrielneigh(coords), row.names = IDs)

> Sy7_nb <- graph2nb(relativeneigh(coords), row.names = IDs)

Delaunay triangulation neighbours and SOI neighbours are symmetric by
design – if i is a neighbour of j, then j is a neighbour of i. The Gabriel graph
is also a subgraph of the Delaunay triangulation, retaining a different set of
neighbours (Matula and Sokal, 1980). It does not, however, guarantee sym-
metry; the same applies to Relative graph neighbours (Toussaint, 1980). The
graph2nb function takes a sym argument to insert links to restore symmetry,
4 Functions for graph-based neighbours were kindly contributed by Nicholas

Lewin-Koh.

246 9 Areal Data and Spatial Autocorrelation

but the graphs then no longer exactly fulfil their neighbour criteria. All the
graph-based neighbour schemes always ensure that all the points will have at
least one neighbour. Subgraphs of the full triangulation may also have more
than one graph after trimming. The functions is.symmetric.nb can be used
to check for symmetry, with argument force=TRUE if the symmetry attribute
is to be overridden, and n.comp.nb reports the number of graph components
and the components to which points belong (after enforcing symmetry, be-
cause the algorithm assumes that the graph is not directed). When there are
more than one graph component, the matrix representation of the spatial
weights can become block-diagonal if observations are appropriately sorted.

> nb_l <- list(Triangulation = Sy4_nb, SOI = Sy5_nb, Gabriel = Sy6_nb,

+ Relative = Sy7_nb)

> sapply(nb_l, function(x) is.symmetric.nb(x, verbose = FALSE,

+ force = TRUE))

Triangulation SOI Gabriel Relative

TRUE TRUE FALSE FALSE

> sapply(nb_l, function(x) n.comp.nb(x)$nc)

Triangulation SOI Gabriel Relative

1 1 1 1

9.2.4 Distance-Based Neighbours

An alternative method is to choose the k nearest points as neighbours – this
adapts across the study area, taking account of differences in the densities
of areal entities. Naturally, in the overwhelming majority of cases, it leads
to asymmetric neighbours, but will ensure that all areas have k neighbours.
The knearneigh returns an intermediate form converted to an nb object by
knn2nb; knearneigh can also take a longlat argument to handle geographical
coordinates.

> Sy8_nb <- knn2nb(knearneigh(coords, k = 1), row.names = IDs)

> Sy9_nb <- knn2nb(knearneigh(coords, k = 2), row.names = IDs)

> Sy10_nb <- knn2nb(knearneigh(coords, k = 4), row.names = IDs)

> nb_l <- list(k1 = Sy8_nb, k2 = Sy9_nb, k4 = Sy10_nb)

> sapply(nb_l, function(x) is.symmetric.nb(x, verbose = FALSE,

+ force = TRUE))

k1 k2 k4

FALSE FALSE FALSE

> sapply(nb_l, function(x) n.comp.nb(x)$nc)

k1 k2 k4

15 1 1

Figure 9.5 shows the neighbour relationships for k = 1, 2, 4, with many
components for k = 1. If need be, k-nearest neighbour objects can be made
symmetrical using the make.sym.nb function. The k = 1 object is also useful in

9.2 Spatial Neighbours 247

a) b) c)

Fig. 9.5. (a) k = 1 neighbours; (b) k = 2 neighbours; (c) k = 4 neighbours

finding the minimum distance at which all areas have a distance-based neigh-
bour. Using the nbdists function, we can calculate a list of vectors of distances
corresponding to the neighbour object, here for first nearest neighbours. The
greatest value will be the minimum distance needed to make sure that all the
areas are linked to at least one neighbour. The dnearneigh function is used to
find neighbours with an interpoint distance, with arguments d1 and d2 setting
the lower and upper distance bounds; it can also take a longlat argument to
handle geographical coordinates.

> dsts <- unlist(nbdists(Sy8_nb, coords))

> summary(dsts)

Min. 1st Qu. Median Mean 3rd Qu. Max.

395.7 587.3 700.1 760.4 906.1 1545.0

> max_1nn <- max(dsts)

> max_1nn

[1] 1544.615

> Sy11_nb <- dnearneigh(coords, d1 = 0, d2 = 0.75 * max_1nn,

+ row.names = IDs)

> Sy12_nb <- dnearneigh(coords, d1 = 0, d2 = 1 * max_1nn,

+ row.names = IDs)

> Sy13_nb <- dnearneigh(coords, d1 = 0, d2 = 1.5 * max_1nn,

+ row.names = IDs)

> nb_l <- list(d1 = Sy11_nb, d2 = Sy12_nb, d3 = Sy13_nb)

> sapply(nb_l, function(x) is.symmetric.nb(x, verbose = FALSE,

+ force = TRUE))

d1 d2 d3

TRUE TRUE TRUE

> sapply(nb_l, function(x) n.comp.nb(x)$nc)

d1 d2 d3

4 1 1

Figure 9.6 shows how the numbers of distance-based neighbours increase
with moderate increases in distance. Moving from 0.75 times the minimum

248 9 Areal Data and Spatial Autocorrelation

a) b) c)

Fig. 9.6. (a) Neighbours within 1,158m; (b) neighbours within 1,545m; (c) neigh-
bours within 2,317m

numbers of neighbours

tra
ct

s

0
4

8
12 max. distance

1158
1545
2317

0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 9.7. Distance-based neighbours: frequencies of numbers of neighbours by census
tract

all-included distance, to the all-included distance, and 1.5 times the mini-
mum all-included distance, the numbers of links grow rapidly. This is a major
problem when some of the first nearest neighbour distances in a study area
are much larger than others, since to avoid no-neighbour areal entities, the
distance criterion will need to be set such that many areas have many neigh-
bours. Figure 9.7 shows the counts of sizes of sets of neighbours for the three
different distance limits. In Syracuse, the census tracts are of similar areas,
but were we to try to use the distance-based neighbour criterion on the eight-
county study area, the smallest distance securing at least one neighbour for
every areal entity is over 38 km.

> dsts0 <- unlist(nbdists(NY_nb, coordinates(NY8)))

> summary(dsts0)

Min. 1st Qu. Median Mean 3rd Qu. Max.

82.7 1505.0 3379.0 5866.0 8954.0 38440.0

If the areal entities are approximately regularly spaced, using distance-
based neighbours is not necessarily a problem. Provided that care is taken to
handle the side effects of ‘weighting’ areas out of the analysis, using lists of
neighbours with no-neighbour areas is not necessarily a problem either, but
certainly ought to raise questions. Different disciplines handle the definition
of neighbours in their own ways by convention; in particular, it seems that

9.2 Spatial Neighbours 249

ecologists frequently use distance bands. If many distance bands are used, they
approach the variogram, although the underlying understanding of spatial
autocorrelation seems to be by contagion rather than continuous.

9.2.5 Higher-Order Neighbours

Distance bands can be generated by using a sequence of d1 and d2 argument
values for the dnearneigh function if needed to construct a spatial autocor-
relogram as understood in ecology. In other conventions, correlograms are
constructed by taking an input list of neighbours as the first-order sets, and
stepping out across the graph to second-, third-, and higher-order neighbours
based on the number of links traversed, but not permitting cycles, which could
risk making i a neighbour of i itself (O’Sullivan and Unwin, 2003, p. 203). The
nblag function takes an existing neighbour list and returns a list of lists, from
first to maxlag order neighbours.
> Sy0_nb_lags <- nblag(Sy0_nb, maxlag = 9)

Table 9.1 shows how the wave of connectedness in the graph spreads to
the third order, receding to the eighth order, and dying away at the ninth

Table 9.1. Higher-order contiguities: frequencies of numbers of neighbours by order
of neighbour list

First Second Third Fourth Fifth Sixth Seventh Eighth Ninth

0 0 0 0 0 0 6 21 49 63
1 1 0 0 0 0 3 7 6 0
2 1 0 0 0 0 0 4 5 0
3 5 0 0 0 1 2 5 2 0
4 9 2 0 0 1 8 9 1 0
5 14 2 0 0 3 2 7 0 0
6 17 0 0 0 1 5 3 0 0
7 9 6 1 0 1 5 5 0 0
8 6 6 3 1 3 4 1 0 0
9 1 11 5 3 7 8 0 0 0
10 0 11 5 5 13 9 0 0 0
11 0 4 7 7 12 5 0 0 0
12 0 3 14 16 8 5 1 0 0
13 0 7 6 16 9 1 0 0 0
14 0 4 8 5 3 0 0 0 0
15 0 6 3 3 1 0 0 0 0
16 0 1 3 3 0 0 0 0 0
17 0 0 0 2 0 0 0 0 0
18 0 0 1 0 0 0 0 0 0
19 0 0 1 1 0 0 0 0 0
20 0 0 1 1 0 0 0 0 0
21 0 0 3 0 0 0 0 0 0
22 0 0 1 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0
24 0 0 1 0 0 0 0 0 0

250 9 Areal Data and Spatial Autocorrelation

order – there are no tracts nine steps from each other in this graph. Both the
distance bands and the graph step order approaches to spreading neighbour-
hoods can be used to examine the shape of relationship intensities in space, like
the variogram, and can be used in attempting to look at the effects of scale.

9.2.6 Grid Neighbours

When the data are known to be arranged in a regular, rectangular grid, the
cell2nb function can be used to construct neighbour lists, including those on
a torus. These are useful for simulations, because, since all areal entities have
equal numbers of neighbours, and there are no edges, the structure of the
graph is as neutral as can be achieved. Neighbours can either be of type rook
or queen.
> cell2nb(7, 7, type = "rook", torus = TRUE)

Neighbour list object:

Number of regions: 49

Number of nonzero links: 196

Percentage nonzero weights: 8.163265

Average number of links: 4

> cell2nb(7, 7, type = "rook", torus = FALSE)

Neighbour list object:

Number of regions: 49

Number of nonzero links: 168

Percentage nonzero weights: 6.997085

Average number of links: 3.428571

When a regular, rectangular grid is not complete, then we can use knowl-
edge of the cell size stored in the grid topology to create an appropriate list
of neighbours, using a tightly bounded distance criterion. Neighbour lists of
this kind are commonly found in ecological assays, such as studies of species
richness at a national or continental scale. It is also in these settings, with
moderately large n, here n = 3,103, that the use of a sparse, list based repre-
sentation shows its strength. Handling a 281×281 matrix for the eight-county
census tracts is feasible, easy for a 63 × 63 matrix for Syracuse census tracts,
but demanding for a 3,103 × 3,103 matrix.
> data(meuse.grid)

> coordinates(meuse.grid) <- c("x", "y")

> gridded(meuse.grid) <- TRUE

> dst <- max(slot(slot(meuse.grid, "grid"), "cellsize"))

> mg_nb <- dnearneigh(coordinates(meuse.grid), 0, dst)

> mg_nb

Neighbour list object:

Number of regions: 3103

Number of nonzero links: 12022

Percentage nonzero weights: 0.1248571

Average number of links: 3.874315

9.3 Spatial Weights 251

> table(card(mg_nb))

1 2 3 4

1 133 121 2848

9.3 Spatial Weights

The literature on spatial weights is surprisingly small, given their importance
in measuring and modelling spatial dependence in areal data. Griffith (1995)
provides sound practical advice, while Bavaud (1998) seeks to insert concep-
tual foundations under ad hoc spatial weights. Spatial weights can be seen as
a list of weights indexed by a list of neighbours, where the weight of the link
between i and j is the kth element of the ith weights list component, and k
tells us which of the ith neighbour list component values is equal to j. If j
is not present in the ith neighbour list component, j is not a neighbour of i.
Consequently, some weights wij in the W weights matrix representation will
set to zero, where j is not a neighbour of i. Here, we follow Tiefelsdorf et al.
(1999) in our treatment, using their abstraction of spatial weights styles.

9.3.1 Spatial Weights Styles

Once the list of sets of neighbours for our study area is established, we pro-
ceed to assign spatial weights to each relationship. If we know little about the
assumed spatial process, we try to avoid moving far from the binary represen-
tation of a weight of unity for neighbours (Bavaud, 1998), and zero otherwise.
In this section, we review the ways that weights objects – listw objects – are
constructed; the class is an old-style class as described on p. 24. Next, the
conversion of these objects into dense and sparse matrix representations will
be shown, concluding with functions for importing and exporting neighbour
and weights objects.

The nb2listw function takes a neighbours list object and converts it into
a weights object. The default conversion style is W, where the weights for each
areal entity are standardised to sum to unity; this is also often called row
standardisation. The print method for listw objects shows the characteristics
of the underlying neighbours, the style of the spatial weights, and the spatial
weights constants used in calculating tests of spatial autocorrelation. The
neighbours component of the object is the underlying nb object, which gives
the indexing of the weights component.

> Sy0_lw_W <- nb2listw(Sy0_nb)

> Sy0_lw_W

Characteristics of weights list object:

Neighbour list object:

Number of regions: 63

252 9 Areal Data and Spatial Autocorrelation

Number of nonzero links: 346

Percentage nonzero weights: 8.717561

Average number of links: 5.492063

Weights style: W

Weights constants summary:

n nn S0 S1 S2

W 63 3969 63 24.78291 258.564

> names(Sy0_lw_W)

[1] "style" "neighbours" "weights"

> names(attributes(Sy0_lw_W))

[1] "names" "class" "region.id" "call"

For style="W", the weights vary between unity divided by the largest and
smallest numbers of neighbours, and the sums of weights for each areal entity
are unity. This spatial weights style can be interpreted as allowing the calcu-
lation of average values across neighbours. The weights for links originating
at areas with few neighbours are larger than those originating at areas with
many neighbours, perhaps boosting areal entities on the edge of the study area
unintentionally. This representation is no longer symmetric, but is similar to
symmetric – this matters as we see below in Sect. 10.2.1.

> 1/rev(range(card(Sy0_lw_W$neighbours)))

[1] 0.1111111 1.0000000

> summary(unlist(Sy0_lw_W$weights))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1111 0.1429 0.1667 0.1821 0.2000 1.0000

> summary(sapply(Sy0_lw_W$weights, sum))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

Setting style="B" – ‘binary’ – retains a weight of unity for each neighbour
relationship, but in this case, the sums of weights for areas differ according to
the numbers of neighbour areas have.

> Sy0_lw_B <- nb2listw(Sy0_nb, style = "B")

> summary(unlist(Sy0_lw_B$weights))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

> summary(sapply(Sy0_lw_B$weights, sum))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 4.500 6.000 5.492 6.500 9.000

9.3 Spatial Weights 253

Two further styles with equal weights for all links are available: C and U,
where the complete set of C weights sums to the number of areas, and U weights
sum to unity.

> Sy0_lw_C <- nb2listw(Sy0_nb, style = "C")

> length(Sy0_lw_C$neighbours)/length(unlist(Sy0_lw_C$neighbours))

[1] 0.1820809

> summary(unlist(Sy0_lw_C$weights))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1821 0.1821 0.1821 0.1821 0.1821 0.1821

> summary(sapply(Sy0_lw_C$weights, sum))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1821 0.8194 1.0920 1.0000 1.1840 1.6390

Finally, the use of a variance-stabilising coding scheme has been proposed
by Tiefelsdorf et al. (1999) and is provided as style="S". The weights vary,
less than for style="W", but the row sums of weights by area vary more than
for style="W" (where they are alway unity) and less than for styles B, C, or U.
This style also makes asymmetric weights, but as with style="W", they may be
similar to symmetric if the neighbours list was itself symmetric. In the same
way that the choice of the criteria to define neighbours may affect the results in
testing or modelling of the use of weights constructed from those neighbours,
results may also be changed by the choice of weights style. As indicated above,
links coming from areal entities with many neighbours may be either weighted
up or down, depending on the choice of style. The variance-stabilising coding
scheme seeks to moderate these conflicting impacts.

> Sy0_lw_S <- nb2listw(Sy0_nb, style = "S")

> summary(unlist(Sy0_lw_S$weights))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1440 0.1633 0.1764 0.1821 0.1932 0.4321

> summary(sapply(Sy0_lw_S$weights, sum))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4321 0.9152 1.0580 1.0000 1.1010 1.2960

9.3.2 General Spatial Weights

The glist argument can be used to pass a list of vectors of general weights
corresponding to the neighbour relationships to nb2listw. Say that we believe
that the strength of neighbour relationships attenuates with distance, one
of the cases considered by Cliff and Ord (1981, pp. 17–18); O’Sullivan and
Unwin (2003, pp. 201–202) provide a similar discussion. We could set the

254 9 Areal Data and Spatial Autocorrelation

weights to be proportional to the inverse distance between points representing
the areas, using nbdists to calculate the distances for the given nb object.
Using lapply to invert the distances, we can obtain a different structure of
spatial weights from those above. If we have no reason to assume any more
knowledge about neighbour relations than their existence or absence, this step
is potentially misleading. If we do know, on the other hand, that migration
or commuting flows describe the spatial weights’ structure better than the
binary alternative, it may be worth using them as general weights; there may,
however, be symmetry problems, because such flows – unlike inverse distances
– are only rarely symmetric.

> dsts <- nbdists(Sy0_nb, coordinates(Syracuse))

> idw <- lapply(dsts, function(x) 1/(x/1000))

> Sy0_lw_idwB <- nb2listw(Sy0_nb, glist = idw, style = "B")

> summary(unlist(Sy0_lw_idwB$weights))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3886 0.7374 0.9259 0.9963 1.1910 2.5270

> summary(sapply(Sy0_lw_idwB$weights, sum))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.304 3.986 5.869 5.471 6.737 9.435

Figure 9.8 shows three representations of spatial weights for Syracuse dis-
played as matrices. The style="W" image on the left is evidently asymmetric,
with darker greys showing larger weights for areas with few neighbours. The
other two panels are symmetric, but express different assumptions about the
strengths of neighbour relationships.

The final argument to nb2listw allows us to handle neighbour lists with
no-neighbour areas. It is not obvious that the weight representation of the
empty set is zero – perhaps it should be NA, which would lead to problems
later.

W style B style IDW B style

Fig. 9.8. Three spatial weights representations for Syracuse

9.3 Spatial Weights 255

For this reason, the default value of the argument is zero.policy=FALSE,
leading to an error when given an nb argument with areas with no neighbours.
Setting the argument to TRUE permits the creation of the spatial weights ob-
ject, with zero weights. The zero.policy argument will subsequently need
to be used in each function called, mainly to keep reminding the user that
having areal entities with no neighbours is seen as unfortunate. The contrast
between the set-based understanding of neighbours and conversion to a ma-
trix representation is discussed by Bivand and Portnov (2004), and boils down
to whether the product of a no-neighbour area’s weights and an arbitrary n-
vector should be a missing value or numeric zero. As we see later (p. 262),
keeping the no-neighbour areal entities raises questions about the relevant size
of n when testing for autocorrelation, among other issues.

> Sy0_lw_D1 <- nb2listw(Sy11_nb, style = "B")

Error in nb2listw(Sy11_nb, style = "B") : Empty neighbour sets found

> Sy0_lw_D1 <- nb2listw(Sy11_nb, style = "B", zero.policy = TRUE)

> print(Sy0_lw_D1, zero.policy = TRUE)

Characteristics of weights list object:

Neighbour list object:

Number of regions: 63

Number of nonzero links: 230

Percentage nonzero weights: 5.79491

Average number of links: 3.650794

2 regions with no links:

154 168

Weights style: B

Weights constants summary:

n nn S0 S1 S2

B 61 3721 230 460 4496

The parallel problem of data sets with missing values in variables but with
with fully specified spatial weights is approached through the subset.listw

method, which re-generates the weights for the given subset of areas, for ex-
ample given by complete.cases. Knowing which observations are incomplete,
the underlying neighbours and weights can be subsetted in some cases, with
the aim of avoiding the propagation of NA values when calculating spatially
lagged values. Many tests and model fitting functions can carry this out inter-
nally if the appropriate argument flag is set, although the careful analyst will
prefer to subset the input data and the weights before testing or modelling.

9.3.3 Importing, Converting, and Exporting Spatial Neighbours
and Weights

Neighbour and weights objects produced in other software can be imported
into R without difficulty, and such objects can be exported to other software

256 9 Areal Data and Spatial Autocorrelation

too. As examples, some files have been generated in GeoDa5 from the Syracuse
census tracts written out as a shapefile, with the centroid used here stored in
the data frame. The first two are for contiguity neighbours, using the queen
and rook criteria, respectively. These so-called GAL-format files contain only
neighbour information, and are described in detail in the help file accompa-
nying the function read.gal.

> Sy14_nb <- read.gal("Sy_GeoDa1.GAL")

> isTRUE(all.equal(Sy0_nb, Sy14_nb, check.attributes = FALSE))

[1] TRUE

> Sy15_nb <- read.gal("Sy_GeoDa2.GAL")

> isTRUE(all.equal(Sy2_nb, Sy15_nb, check.attributes = FALSE))

[1] TRUE

The write.nb.gal function is used to write GAL-format files from nb ob-
jects. GeoDa also makes GWT-format files, described in the GeoDa docu-
mentation and the help file, which also contain distance information for the
link between the areas, and are stored in a three-column sparse representation.
They can be read using read.gwt2nb, here for a four-nearest-neighbour scheme,
and only using the neighbour links. In general, spdep and GeoDa neighbours
and weights are easy to exchange, not least because of generous contribu-
tions of code to spdep and time for testing by Luc Anselin, who created and
administers GeoDa.

> Sy16_nb <- read.gwt2nb("Sy_GeoDa4.GWT")

> isTRUE(all.equal(Sy10_nb, Sy16_nb, check.attributes = FALSE))

[1] TRUE

A similar set of functions is available for exchanging spatial weights with
the Spatial Econometrics Library6 created by James LeSage. The sparse repre-
sentation of weights is similar to the GWT-format and can be imported using
read.dat2listw. Export to three different formats goes through the listw2sn

function, which converts a spatial weights object to a three-column sparse rep-
resentation, similar to the ‘spatial.neighbor’ class in the S-PLUS™ SpatialStats
module. The output data frame can be written with write.table to a file to
be read into S-PLUS™, written out as a GWT-format file with write.sn2gwt

or as a text representation of a sparse matrix for Matlab™ with write.sn2dat.
There is a function called listw2WB for creating a list of spatial weights for
WinBUGS, to be written to file using dput.

In addition, listw2mat can be used to export spatial weights to, among
others, Stata for use with the contributed spatwmat command there. This is
done by writing the matrix out as a Stata™ data file, here for the binary
contiguity matrix for Syracuse:
5 http://www.geoda.uiuc.edu/, Anselin et al. (2006).
6 http://www.spatial-econometrics.com.

9.3 Spatial Weights 257

> library(foreign)

> df <- as.data.frame(listw2mat(Sy0_lw_B))

> write.dta(df, file = "Sy0_lw_B.dta", version = 7)

The mat2listw can be used to reverse the process, when a dense weights
matrix has been read into R, and needs to be made into a neighbour and
weights list object. Unfortunately, this function does not set the style of the
listw object to a known value, using M to signal this lack of knowledge. It is
then usual to rebuild the listw object, treating the neighbours component as
an nb object, the weights component as a list of general weights and setting
the style in the nb2listw function directly. It was used for the initial import
of the eight-county contiguities, as shown in detail on the NY_data help page
provided with spdep.

Finally, there is a function nb2lines to convert neighbour lists into Spa-
tialLinesDataFrame objects, given point coordinates representing the areas.
This allows neighbour objects to be plotted in an alternative way, and if need
be, to be exported as shapefiles.

9.3.4 Using Weights to Simulate Spatial Autocorrelation

In Fig. 9.8, use was made of listw2mat to turn a spatial weights object into a
dense matrix for display. The same function is used for constructing a dense
representation of the (I − ρW) matrix to simulate spatial autocorrelation
within the invIrW function, where W is a weights matrix, ρ is a spatial au-
tocorrelation coefficient, and I is the identity matrix. This approach was in-
troduced by Cliff and Ord (1973, pp. 146–147), and does not impose strict
conditions on the matrix to be inverted (only that it be non-singular), and only
applies to simulations from a simultaneous autoregressive process. The under-
lying framework for the covariance representation used here – simultaneous
autoregression – will be presented in Sect. 10.2.1.

Starting with a vector of random numbers corresponding to the number
of census tracts in Syracuse, we use the row-standardised contiguity weights
to introduce autocorrelation.

> set.seed(987654)

> n <- length(Sy0_nb)

> uncorr_x <- rnorm(n)

> rho <- 0.5

> autocorr_x <- invIrW(Sy0_lw_W, rho) %*% uncorr_x

The outcome is shown in Fig. 9.9, where the spatial lag plot of the original,
uncorrelated variable contrasts with that of the autocorrelated variable, which
now has a strong positive relationship between tract values and the spatial
lag – here the average of values of neighbouring tracts.

The lag method for listw objects creates ‘spatial lag’ values: lag(yi) =∑
j∈Ni

wijyj for observed values yi; Ni is the set of neighbours of i. If the

258 9 Areal Data and Spatial Autocorrelation

−2 −1 0 1 2

−
1.

0

Uncorrelated random variable

random variable

sp
at

ia
l l

ag

−3 −2 −1 0 1 2

0.
5

Autocorrelated random variable

autocorrelated random variable

sp
at

ia
l l

ag

−
1.

5
−

0.
50.

0

Fig. 9.9. Simulating spatial autocorrelation: spatial lag plots, showing a locally
weighted smoother line

weights object style is row-standardisation, the lag(yi) values will be averages
over the sets of neighbours for each i, rather like a moving window defined by
Ni and including values weighted by wij .

9.3.5 Manipulating Spatial Weights

There are three contributed packages providing support for sparse matrices,
SparseM, Matrix, and spam. The spdep package began by using compiled
code shipped with the package for sparse matrix handling, but changed first
to SparseM, next adding Matrix wrappers, and more recently introducing the
use of spam and deprecating the interface to SparseM. The as.spam.listw

wrapper to the spam package spam class is used internally in spatial regression
functions among others. The as_dgRMatrix_listw wrapper provides the same
conversion to the Matrix dgRMatrix class.

A function that is used a good deal within testing and model fitting func-
tions is listw2U, which returns a symmetric listw object representing the
1
2 (W + WT) spatial weights matrix.

Analysing areal data is crucially dependent on the construction of the spa-
tial weights, which is why it has taken some time to describe the breadth of
choices facing the researcher. We can now go on to test for spatial autocorre-
lation, and to model using assumptions about underlying spatial processes.

9.4 Spatial Autocorrelation: Tests

Now that we have a range of ways of constructing spatial weights, we can
start using them to test for the presence of spatial autocorrelation. Before
doing anything serious, it would be very helpful to review the assumptions
being made in the tests; we will be using Moran’s I as an example, but the

9.4 Spatial Autocorrelation: Tests 259

consequences apply to other tests too. As Schabenberger and Gotway (2005,
pp. 19–23) explain clearly, tests assume that the mean model of the data
removes systematic spatial patterning from the data. If we are examining
ecological data, but neglect environmental drivers such as temperature, pre-
cipitation, or elevation, we should not be surprised if the data seem to display
spatial autocorrelation (for a discussion, see Bivand, 2008, pp. 9–15). Such
misspecification of the mean model is not at all uncommon, and may be un-
avoidable where observations on variables needed to specify it correctly are not
available. In fact, Cressie (1993, p. 442) only discusses the testing of residual
autocorrelation, and then very briefly, preferring to approach autocorrelation
through modelling.

Another issue that can arise is that the spatial weights we use for testing
are not those that generated the autocorrelation – our chosen weights may,
for example not suit the actual scales of interaction between areal entities.
This is a reflection of misspecification of the model of the variance of the
residuals from the mean model, which can also include making distributional
assumptions that are not appropriate for the data, for example assuming ho-
moskedasticity or regular shape parameters (for example, skewness and kur-
tosis). Some of these can be addressed by transforming the data and by using
weighted estimation, but in any case, care is needed in interpreting apparent
spatial autocorrelation that may actually stem from misspecification.

The use of global tests for spatial autocorrelation is covered in much more
detail that the construction of spatial weights in the spatial data analysis
texts that we are tracking. Waller and Gotway (2004, pp. 223–236) follow up
the problem of mistaking the misspecification of the mean model for spatial
autocorrelation. This is less evident in Fortin and Dale (2005, pp. 122–132)
and O’Sullivan and Unwin (2003, pp. 180–203), but they devote more space
to join count statistics for categorical data. Banerjee et al. (2004, pp. 71–73)
are, like Cressie (1993), more concerned with modelling than testing.

We begin with the simulated variable for the Syracuse census tracts (see
Sect. 9.3.4). Since the input variable is known to be drawn at random from the
Normal distribution, we can manipulate it to see what happens to test results
under different conditions. The test to be used in this introductory discussion
is Moran’s I, which is calculated as a ratio of the product of the variable of
interest and its spatial lag, with the cross-product of the variable of interest,
and adjusted for the spatial weights used:

I =
n∑n

i=1

∑n
j=1 wij

∑n
i=1

∑n
j=1 wij(yi − ȳ)(yj − ȳ)∑n

i=1(yi − ȳ)2
,

where yi is the ith observation, ȳ is the mean of the variable of interest, and
wij is the spatial weight of the link between i and j. Centring on the mean is
equivalent to asserting that the correct model has a constant mean, and that
any remaining patterning after centring is caused by the spatial relationships
encoded in the spatial weights.

260 9 Areal Data and Spatial Autocorrelation

Table 9.2. Moran’s I test results for five different data generating processes

I E(I) var(I) St. deviate p-value

uncorr x −0.03329 −0.01613 0.00571 −0.227 0.59
autocorr x 0.2182 −0.0161 0.0057 3.1 0.00096
autocorr x k=1 0.1921 −0.0161 0.0125 1.86 0.031
trend x 0.23747 −0.01613 0.00575 3.34 0.00041
lm(trend x ∼ et) −0.0538 −0.0309 0.0054 −0.312 0.62

The results for Moran’s I are collated in Table 9.2 for five settings. The
first column contains the observed value of I, the second is the expectation,
which is −1/(n − 1) for the mean-centred cases, the third the variance of the
statistic under randomisation, next the standard deviate (I −E(I))/

√
var(I),

and finally the p-value of the test for the alternative that I > E(I). The
test results are for the uncorrelated case first (uncorr_x) – there is no trace
of spatial dependence with these weights. Even though a random drawing
could show spatial autocorrelation, we would be unfortunate to find a pattern
corresponding to our spatial weights by chance for just one draw. When the
spatially autocorrelated variable is tested (autocorr_x), it shows, as one would
expect, a significant result for these spatial weights. If we use spatial weights
that differ from those used to generate the spatial autocorrelation (autocorr_x
k=1), the value of I falls, and although it is marginally significant, it is worth
remembering that, had the generating process been less strong, we might
have come to the wrong conclusion based on the choice of spatial weights not
matching the actual generating process.

> moran_u <- moran.test(uncorr_x, listw = Sy0_lw_W)

> moran_a <- moran.test(autocorr_x, listw = Sy0_lw_W)

> moran_a1 <- moran.test(autocorr_x, listw = nb2listw(Sy9_nb,

+ style = "W"))

The final two rows of Table 9.2 show what can happen when our assump-
tion of a constant mean is erroneous (Schabenberger and Gotway, 2005, pp.
22–23). Introducing a gentle trend rising from west to east into the uncorre-
lated random variable, we have a situation in which there is no underlying
spatial autocorrelation, just a simple linear trend. If we assume a constant
mean, we reach the wrong conclusion shown in the fourth row of the table
(trend_x). The final row shows how we get back to the uncorrelated residuals
by including the trend in the mean, and again have uncorrelated residuals
(lm(trend_x ∼ et)).

> et <- coords[, 1] - min(coords[, 1])

> trend_x <- uncorr_x + 0.00025 * et

> moran_t <- moran.test(trend_x, listw = Sy0_lw_W)

> moran_t1 <- lm.morantest(lm(trend_x ~ et), listw = Sy0_lw_W)

This shows how important it can be to understand that tests for spatial
autocorrelation can also react to a misspecified model of the mean, and that

9.4 Spatial Autocorrelation: Tests 261

the omission of a spatially patterned variable from the mean function will
‘look like’ spatial autocorrelation to the tests.

9.4.1 Global Tests

Moran’s I – moran.test – is perhaps the most common global test, and for
this reason we continue to use it here. Other global tests implemented in
the spdep package include Geary’s C (geary.test()), the global Getis-Ord G
(globalG.test()), and the spatial general cross product Mantel test, which
includes Moran’s I, Geary’s C, and the Sokal variant of Geary’s C as alter-
native forms (sp.mantel.mc()). All these are for continuous variables, with
moran.test() having an argument to use an adjustment for a ranked con-
tinuous variable, that is where the metric of the variable is by the ranks of
its values rather than the values themselves. There are also join count tests
for categorical variables, with the variable of interest represented as a factor
(joincount.test() for same-colour joins, joincount.multi() for same-colour
and different colour joins).

The values of these statistics may be of some interest in themselves, but
are not directly interpretable. The approach taken most generally is to stan-
dardise the observed value by subtracting the analytical expected value, and
dividing the difference by the square root of the analytical variance for the
spatial weights used, for a set of assumptions. The result is a standard deviate,
and is compared with the Normal distribution to find the probability value of
the observed statistic under the null hypothesis of no spatial dependence for
the chosen spatial weights – most often the test is one-sided, with an alter-
native hypothesis of the observed statistic being significantly greater than its
expected value.

As we see, outcomes can depend on the choices made, for example the
style of the weights and to what extent the assumptions made are satisfied.
It might seem that Monte Carlo or equivalently bootstrap permutation-based
tests, in which the values of the variable of interest are randomly assigned to
spatial entities, would provide protection against errors of inference. In fact,
because tests for spatial autocorrelation are sensitive to spatial patterning in
the variable of interest from any source, they are not necessarily – as we saw
above – good guides to decide what is going on in the data generation process.
Parametric bootstrapping or tests specifically tuned to the setting – or better
specification of the variable of interest – are sometimes needed.

A further problem for which there is no current best advice is how to
proceed if some areal entities have no neighbours. By default, test functions
in spdep do not accept spatial weights with no-neighbour entities unless the
zero.policy argument is set to TRUE. But even if the analyst accepts the pres-
ence of rows and columns with only zero entries in the spatial weights matrix,
the correct size of n can be taken as the number of observations, or may be
reduced to reflect the fact that some of the observations are effectively being
ignored. By default, n is adjusted, but the adjust.n argument may be set to

262 9 Areal Data and Spatial Autocorrelation

FALSE. If n is not adjusted, for example for Moran’s I, the absolute value of
the statistic will increase, and the absolute value of its expectation and vari-
ance will decrease. When measures of autocorrelation were developed, it was
generally assumed that all entities would have neighbours, so what one should
do when some do not, is not obvious. The problem is not dissimilar to the
choice of variogram bin widths and weights in geostatistics (Sect. 8.4.3).

We have already used the New York state eight-county census tract data
set for examining the construction of neighbour lists and spatial weights. Now
we introduce the data themselves, based on Waller and Gotway (2004, pp. 98,
345–353). There are 281 census tract observations, including as we have seen
sparsely populated rural areas contrasting with dense, small, urban tracts. The
numbers of incident leukaemia cases are recorded by tract, aggregated from
census block groups, but because some cases could not be placed, they were
added proportionally to other block groups, leading to non-integer counts.
The counts are for the five years 1978–1982, while census variables, such as
the tract population, are just for 1980. Other census variables are the per-
centage aged over 65, and the percentage of the population owning their own
home. Exposure to TCE waste sites is represented as the logarithm of 100
times the inverse of the distance from the tract centroid to the nearest site.
We return to these covariates in the next chapter.

The first example is of testing the number of cases by census tract (follow-
ing Waller and Gotway (2004, p. 231)) for autocorrelation using the default
spatial weights style of row standardisation, and using the analytical randomi-
sation assumption in computing the variance of the statistic. The outcome,
as we see, is that the spatial patterning of the variable of interest is signifi-
cant, with neighbouring tracts very likely to have similar values for whatever
reason.

> moran.test(NY8$Cases, listw = nb2listw(NY_nb))

Moran's I test under randomisation

data: NY8$Cases

weights: nb2listw(NY_nb)

Moran I statistic standard deviate = 3.978, p-value = 3.477e-05

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.146883 -0.003571 0.001431

Changing the style of the spatial weights to make all weights equal and
summing to the number of observations, we see that the resulting probability
value is reduced about 20 times – we recall that row-standardisation favours
observations with few neighbours, and that styles ‘B’, ‘C’, and ‘U’ ‘weight
up’ observations with many neighbours. In this case, style ‘S’ comes down
between ‘C’ and ‘W’.

9.4 Spatial Autocorrelation: Tests 263

> lw_B <- nb2listw(NY_nb, style = "B")

> moran.test(NY8$Cases, listw = lw_B)

Moran's I test under randomisation

data: NY8$Cases

weights: lw_B

Moran I statistic standard deviate = 3.186, p-value = 0.0007207

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.110387 -0.003571 0.001279

By default, moran.test uses the randomisation assumption, which differs
from the simpler normality assumption by introducing a correction term based
on the kurtosis of the variable of interest (here 3.63). When the kurtosis value
corresponds to that of a normally distributed variable, the two assumptions
yield the same variance, but as the variable departs from normality, the ran-
domisation assumption compensates by increasing the variance and decreasing
the standard deviate. In this case, there is little difference and the two return
similar outcomes.

> moran.test(NY8$Cases, listw = lw_B, randomisation = FALSE)

Moran's I test under normality

data: NY8$Cases

weights: lw_B

Moran I statistic standard deviate = 3.183, p-value = 0.0007301

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.110387 -0.003571 0.001282

It is useful to show here that the standard test under normality is in
fact the same test as the Moran test for regression residuals for the model,
including only the intercept. Making this connection here shows that we could
introduce additional variables on the right-hand side of our model, over and
above the intercept, and potentially other ways of handling misspecification.

> lm.morantest(lm(Cases ~ 1, NY8), listw = lw_B)

Global Moran's I for regression residuals

data:

model: lm(formula = Cases ~ 1, data = NY8)

weights: lw_B

264 9 Areal Data and Spatial Autocorrelation

Moran I statistic standard deviate = 3.183, p-value = 0.0007301

alternative hypothesis: greater

sample estimates:

Observed Moran's I Expectation Variance

0.110387 -0.003571 0.001282

Using the same construction, we can also use a Saddlepoint approxima-
tion rather than the analytical normal assumption (Tiefelsdorf, 2002), and an
exact test (Tiefelsdorf, 1998, 2000; Hepple, 1998; Bivand et al., 2008). These
methods are substantially more demanding computationally, and were origi-
nally regarded as impractical. For moderately sized data sets such as the one
we are using, however, need less than double the time required for reaching
a result. In general, exact and Saddlepoint methods make little difference to
outcomes for global tests when the number of spatial entities is not small,
as here, with the probability value only changing by a factor of two. We see
later that the impact of differences between the normality assumption and the
Saddlepoint approximation and exact test is stronger for local indicators of
spatial association.

> lm.morantest.sad(lm(Cases ~ 1, NY8), listw = lw_B)

Saddlepoint approximation for global Moran's I

(Barndorff-Nielsen formula)

data:

model:lm(formula = Cases ~ 1, data = NY8)

weights: lw_B

Saddlepoint approximation = 2.993, p-value = 0.001382

alternative hypothesis: greater

sample estimates:

Observed Moran's I

0.1104

> lm.morantest.exact(lm(Cases ~ 1, NY8), listw = lw_B)

Global Moran's I statistic with exact p-value

data:

model:lm(formula = Cases ~ 1, data = NY8)

weights: lw_B

Exact standard deviate = 2.992, p-value = 0.001384

alternative hypothesis: greater

sample estimates:

[1] 0.1104

We can also use a Monte Carlo test, a permutation bootstrap test, in
which the observed values are randomly assigned to tracts, and the statistic of

9.4 Spatial Autocorrelation: Tests 265

interest computed nsim times. Since we have enough observations in the global
case, we can repeat this permutation potentially very many times without
repetition.

> set.seed(1234)

> bperm <- moran.mc(NY8$Cases, listw = lw_B, nsim = 999)

> bperm

Monte-Carlo simulation of Moran's I

data: NY8$Cases

weights: lw_B

number of simulations + 1: 1000

statistic = 0.1104, observed rank = 998, p-value = 0.002

alternative hypothesis: greater

Waller and Gotway (2004, p. 231) also include a Poisson constant risk
parametric bootstrap assessment of the significance of autocorrelation in the
case counts. The constant global rate r is calculated first, and used to create
expected counts for each census tract by multiplying by the population.

> r <- sum(NY8$Cases)/sum(NY8$POP8)

> rni <- r * NY8$POP8

> CR <- function(var, mle) rpois(length(var), lambda = mle)

> MoranI.pboot <- function(var, i, listw, n, S0, ...) {

+ return(moran(x = var, listw = listw, n = n, S0 = S0)$I)

+ }

> set.seed(1234)

> boot2 <- boot(NY8$Cases, statistic = MoranI.pboot,

+ R = 999, sim = "parametric", ran.gen = CR,

+ listw = lw_B, n = length(NY8$Cases), S0 = Szero(lw_B),

+ mle = rni)

> pnorm((boot2$t0 - mean(boot2$t))/sd(boot2$t), lower.tail = FALSE)

[1] 0.1472

The expected counts can also be expressed as the fitted values of a null
Poisson regression with an offset set to the logarithm of tract population – with
a log-link, this shows the relationship to generalised linear models (because
Cases are not all integer, warnings are generated):

> rni <- fitted(glm(Cases ~ 1 + offset(log(POP8)), data = NY8,

+ family = "poisson"))

These expected counts rni are fed through to the lambda argument to rpois

to generate the synthetic data sets by sampling from the Poisson distribution.
The output probability value is calculated from the same observed Moran’s I

266 9 Areal Data and Spatial Autocorrelation

Permutation bootstrap

Istd

F
re

qu
en

cy

−0.10 −0.10

Parametric bootstrap

ICR

F
re

qu
en

cy

0.15 0.150.05 0.05

25
0

20
0

15
0

10
0

50
0

25
0

20
0

15
0

10
0

50
0

Fig. 9.10. Histograms of simulated values of Moran’s I under random permutations
of the data and parametric samples from constant risk expected values; the observed
values of Moran’s I are marked by vertical lines

minus the mean of the simulated I values, and divided by their standard devi-
ation. Figure 9.10 corresponds to Waller and Gotway (2004, p. 232, Fig. 7.8),
with the parametric simulations shifting the distribution of Moran’s I right-
wards, because it is taking the impact of the heterogeneous tract populations
into account.

There is a version of Moran’s I adapted to use an Empirical Bayes rate by
Assunção and Reis (1999) that, unlike the rate results above, shrinks extreme
rates for tracts with small populations at risk towards the rate for the area as
a whole – it also uses Monte Carlo methods for inference:

> set.seed(1234)

> EBImoran.mc(n = NY8$Cases, x = NY8$POP8, listw = nb2listw(NY_nb,

+ style = "B"), nsim = 999)

Monte-Carlo simulation of Empirical Bayes Index

data: cases: NY8$Cases, risk population: NY8$POP8

weights: nb2listw(NY_nb, style = "B")

number of simulations + 1: 1000

statistic = 0.0735, observed rank = 980, p-value = 0.02

alternative hypothesis: greater

The results for the Empirical Bayes rates suggest that one reason for the
lack of significance of the parametric bootstrapping of the constant risk ob-
served and expected values could be that unusual and extreme values were
observed in tracts with small populations. Once the rates have been smoothed,
some global autocorrelation is found.

9.4 Spatial Autocorrelation: Tests 267

> cor8 <- sp.correlogram(neighbours = NY_nb, var = NY8$Cases,

+ order = 8, method = "I", style = "C")

> print(cor8, p.adj.method = "holm")

Spatial correlogram for NY8$Cases

method: Moran's I

estimate expectation variance standard deviate Pr(I) two sided

1 0.110387 -0.003571 0.001279 3.19 0.01009 *

2 0.095113 -0.003571 0.000564 4.16 0.00026 ***

3 0.016711 -0.003571 0.000348 1.09 0.83111

4 0.037506 -0.003571 0.000255 2.57 0.06104 .

5 0.026920 -0.003571 0.000203 2.14 0.12960

6 0.026428 -0.003571 0.000175 2.27 0.11668

7 0.009341 -0.003571 0.000172 0.98 0.83111

8 0.002119 -0.003571 0.000197 0.41 0.83111

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Another approach is to plot and tabulate values of a measure of spatial
autocorrelation for higher orders of neighbours or bands of more distant neigh-
bours where the spatial entities are points. The spdep package provides the
first type as a wrapper to nblag and moran.test, so that here the first-order
contiguous neighbours we have used until now are ‘stepped out’ to the re-
quired number of orders. Figure 9.11 shows the output plot in the left panel,
and suggests that second-order neighbours are also positively autocorrelated
(although the probability values should be adjusted for multiple comparisons).

The right panel in Fig. 9.11 presents the output of the correlog function
in the pgirmess package by Patrick Giraudoux; the function is a wrapper
for dnearneigh and moran.test. The function automatically selects distance
bands of almost 10 km, spanning the whole study area. In this case, the first
two bands of 0–10 and 10–20 km have significant values.

0.
00

0.
10

Contiguity lag orders

lags

M
or

an
’s

 I

1 2 3 4 5 6 7 8

−0
.2

Distance bands

distance classes

M
or

an
 I

st
at

is
tic

0 30000 80000 130000

0.
2

0.
1

0.
0

Fig. 9.11. Correlograms: (left) values of Moran’s I for eight successive lag orders of
contiguous neighbours; (right) values of Moran’s I for a sequence of distance band
neighbour pairs

268 9 Areal Data and Spatial Autocorrelation

> library(pgirmess)

> corD <- correlog(coordinates(NY8), NY8$Cases, method = "Moran")

> corD

Moran I statistic

dist.class coef p.value n

[1,] 4996 0.183373 3.781e-09 10728

[2,] 14822 0.113940 1.128e-08 9248

[3,] 24649 0.007028 3.025e-01 5718

[4,] 34475 -0.028733 8.968e-01 5376

[5,] 44302 -0.017871 7.686e-01 5342

[6,] 54128 -0.012729 6.940e-01 5578

[7,] 63954 0.026370 5.040e-02 5524

[8,] 73781 0.047751 3.620e-03 5976

[9,] 83607 -0.046052 9.730e-01 4334

[10,] 93434 0.011773 2.632e-01 3862

[11,] 103260 -0.017014 7.074e-01 8756

[12,] 113086 -0.128775 1.000e+00 5816

[13,] 122913 0.003007 4.246e-01 1958

[14,] 132739 -0.243455 9.987e-01 320

[15,] 142566 0.124519 8.951e-02 92

[16,] 152392 -0.024368 4.435e-01 44

[17,] 162218 -0.014310 1.495e-01 6

9.4.2 Local Tests

Global tests for spatial autocorrelation are calculated from the local relation-
ships between the values observed at a spatial entity and its neighbours, for
the neighbour definition chosen. Because of this, we can break global mea-
sures down into their components, and by extension, construct localised tests
intended to detect ‘clusters’ – observations with very similar neighbours –
and ‘hotspots’ – observations with very different neighbours. These are dis-
cussed briefly by Schabenberger and Gotway (2005, pp. 23–25) and O’Sullivan
and Unwin (2003, pp. 203–205), and at greater length by Waller and Gotway
(2004, pp. 236–242) and Fortin and Dale (2005, pp. 153–159). They are cov-
ered in some detail by Lloyd (2007, pp. 65–70) in a book concentrating on
local models.

First, let us examine a Moran scatterplot of the leukaemia case count vari-
able. The plot (shown in Fig. 9.12) by convention places the variable of interest
on the x-axis, and the spatially weighted sum of values of neighbours – the
spatially lagged values – on the y-axis. Global Moran’s I is a linear relation-
ship between these and is drawn as a slope. The plot is further partitioned into
quadrants at the mean values of the variable and its lagged values: low–low,
low–high, high–low, and high–high.

> moran.plot(NY8$Cases, listw = nb2listw(NY_nb, style = "C"))

9.4 Spatial Autocorrelation: Tests 269

0 2 4 6 8

0
2

4
6

NY8$Cases

sp
at

ia
lly

 la
gg

ed
 N

Y
8$

C
as

es

0

14

30

33

36

42

45

47

49

51

52

61

63

64

65

66

84

85

88

90

91

117

118
154

255
264

Moran scatterplot

None
HL
LH
HH

Tracts with influence

Fig. 9.12. (Left) Moran scatterplot of leukaemia incidence; (right) tracts with in-
fluence by Moran scatterplot quadrant

Since global Moran’s I is, like similar correlation coefficients, a linear re-
lationship, we can also apply standard techniques for detecting observations
with unusually strong influence on the slope. Specifically, moran.plot calls
influence.measures on the linear model of lm(wx ∼ x) providing the slope co-
efficient, where wx is the spatially lagged value of x. This means that we can
see whether particular local relationships are able to influence the slope more
than proportionally. The map in the right panel of Fig. 9.12 shows tracts with
significant influence (using standard criteria) coded by their quadrant in the
Moran scatterplot.

Local Moran’s Ii values are constructed as the n components summed to
reach global Moran’s I:

Ii =
(yi − ȳ)

∑n
j=1 wij(yj − ȳ)∑ n

i=1(yi−ȳ)2

n

,

where once again we assume that the global mean ȳ is an adequate representa-
tion of the variable of interest y. The two components in the numerator, (yi−ȳ)
and

∑n
j=1 wij(yj − ȳ), appear without centring in the Moran scatterplot.

As with the global statistic, the local statistics can be tested for divergence
from expected values, under assumptions of normality, and randomisation
analytically, and using Saddlepoint approximations and exact methods. The
two latter methods can be of importance because the number of neighbours
of each observation is very small, and this in turn may make the adoption
of the normality assumption problematic. Using numerical methods, which
would previously have been considered demanding, the Saddlepoint approxi-
mation or exact local probability values can be found in well under 10 s, about

270 9 Areal Data and Spatial Autocorrelation

20 times slower than probability values based on normality or randomisation
assumptions, for this moderately sized data set.

Trying to detect residual local patterning in the presence of global spa-
tial autocorrelation is difficult. For this reason, results for local dependence
are not to be seen as ‘absolute’, but are conditioned at least by global spa-
tial autocorrelation, and more generally by the possible influence of spatial
data generating processes at a range of scales from global through local to
dependence not detected at the scale of the observations.

> lm1 <- localmoran(NY8$Cases, listw = nb2listw(NY_nb,

+ style = "C"))

> lm2 <- as.data.frame(localmoran.sad(lm(Cases ~ 1, NY8),

+ nb = NY_nb, style = "C"))

> lm3 <- as.data.frame(localmoran.exact(lm(Cases ~ 1, NY8),

+ nb = NY_nb, style = "C"))

Waller and Gotway (2004, p. 239) extend their constant risk hypothesis
treatment to local Moran’s Ii, and we can follow their lead:

> r <- sum(NY8$Cases)/sum(NY8$POP8)

> rni <- r * NY8$POP8

> lw <- nb2listw(NY_nb, style = "C")

> sdCR <- (NY8$Cases - rni)/sqrt(rni)

> wsdCR <- lag(lw, sdCR)

> I_CR <- sdCR * wsdCR

Figure 9.13 shows the two sets of values of local Moran’s Ii, calculated
in the standard way and using the Poisson assumption for the constant risk
hypothesis. We already know that global Moran’s I can vary in value and in

Standard Constant_risk

−2

−1

0

1

2

3

4

5

6

7

Fig. 9.13. Local Moran’s Ii values calculated directly and using the constant risk
hypothesis

9.4 Spatial Autocorrelation: Tests 271

inference depending on our assumptions – for example that inference should
take deviations from our distributional assumptions into account. The same
applies here to the assumption for the Poisson distribution that its mean and
standard deviation are equal, whereas over-dispersion seems to be a problem
in data also displaying autocorrelation. There are some sign changes between
the maps, with the constant risk hypothesis values somewhat farther from
zero.

We can also construct a simple Monte Carlo test of the constant risk
hypothesis local Moran’s Ii values, simulating very much as in the global case,
but now retaining all of the local results. Once the simulation is completed,
we extract the rank of the observed constant risk local Moran’s Ii value for
each tract, and calculate its probability value for the number of simulations
made. We use a parametric approach to simulating the local counts using
the local expected count as the parameter to rpois, because the neighbour
counts are very low and make permutation unwise. Carrying out permutation
testing using the whole data set also seems unwise, because we would then be
comparing like with unlike.

> set.seed(1234)

> nsim <- 999

> N <- length(rni)

> sims <- matrix(0, ncol = nsim, nrow = N)

> for (i in 1:nsim) {

+ y <- rpois(N, lambda = rni)

+ sdCRi <- (y - rni)/sqrt(rni)

+ wsdCRi <- lag(lw, sdCRi)

+ sims[, i] <- sdCRi * wsdCRi

+ }

> xrank <- apply(cbind(I_CR, sims), 1, function(x) rank(x)[1])

> diff <- nsim - xrank

> diff <- ifelse(diff > 0, diff, 0)

> pval <- punif((diff + 1)/(nsim + 1))

The probability values shown in Fig. 9.14 are in general very similar to
each other. We follow Waller and Gotway (2004) in not adjusting for mul-
tiple comparisons, and will consequently not interpret the probability values
as more than indications. Values close to zero are said to indicate clusters in
the data where tracts with similar values neighbour each other (positive local
autocorrelation and a one-sided test). Values close to unity indicate hotspots
where the values of contiguous tracts differ more than might be expected (neg-
ative local autocorrelation and a one-sided test). Of course, finding clusters or
hotspots also needs to be qualified by concerns about misspecification in the
underlying model of the data generation process.

Finally, we zoom in to examine the local Moran’s Ii probability values for
three calculation methods for the tracts in and near the city of Binghampton
(Fig. 9.15). It appears that the use of the constant risk approach handles the
heterogeneity in the counts better than the alternatives. These results broadly

272 9 Areal Data and Spatial Autocorrelation

Normal Randomisation Saddlepoint

Exact Constant_risk

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9.14. Probability values for all census tracts, local Moran’s Ii: normality and
randomisation assumptions, Saddlepoint approximation, exact values, and constant
risk hypothesis

Normal Exact Constant_risk

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9.15. Probability values for census tracts in and near the city of Binghampton,
local Moran’s Ii: normality assumption, exact values, and constant risk hypothesis

agree with those reached by Waller and Gotway (2004, p. 241), but we note
that our underlying model is very simplistic. Finding spatial autocorrelation
is not a goal in itself, be it local or global, but rather just one step in a process
leading to a proper model. It is to this task that we now turn.

10

Modelling Areal Data

10.1 Introduction

We have seen in Chap. 9 that the lack of independence between observations
in spatial data – spatial autocorrelation – is commonplace, and that tests
are available. In an ideal world, one would prefer to gather data in which the
observations were mutually independent, and so avoid problems in inference
from analytical results. Most applied data analysts, however, do not have this
option, and must work with the data that are available, or that can be collected
with available technologies. It is quite often the case that observations on
relevant covariates are not available at all, and that the detection of spatial
autocorrelation in data or model residuals in fact constitutes the only way left
to model the remaining variation.

In this chapter, we show how spatial structure in dependence between
observations may be modelled, in particular for areal data, but where neces-
sary also using alternative representations. We look at spatial econometrics
approaches separately, because the terminology used in that domain differs
somewhat from other areas of spatial statistics. We cover spatial filtering us-
ing Moran eigenvectors and geographically weighted regression in this chapter,
but leave Bayesian hierarchical models until Chap. 11.

The problems we face when trying to fit models in the presence of spatial
autocorrelation are challenging, not least because the spatial autocorrelation
that we seem to have found may actually come from model misspecification
(see Sect. 9.4). If this is the case, effort spent on modelling the spatial struc-
ture would be better used on improving the model itself, perhaps by handling
heteroskedasticity, by adding a missing covariate, by revisiting the functional
form of included covariates, or by reconsidering the distributional representa-
tion of the response variable.

274 10 Modelling Areal Data

10.2 Spatial Statistics Approaches

Spatial dependence can be modelled in different ways using statistical mod-
els. In many cases, it is common to assume that observations are independent
and identically distributed, but this may not be the case when working with
spatial data. Observations are not independent because there may exist some
correlation between neighbouring areas. It may also be difficult to pick apart
the impact of spatial autocorrelation and spatial differences in the distribution
of the observation. Cressie (1993, pp. 402–448, 458–477, 548–568) provides a
very wide discussion of these approaches, including reviews of the background
for their development and comprehensive worked examples. Schabenberger
and Gotway (2005, pp. 335–348) and Waller and Gotway (2004, pp. 362–380)
concentrate on the spatial autoregressive models to be used in this section.
Wall (2004) provides a useful comparative review of the ways in which spa-
tial processes for areal data are modelled. Banerjee et al. (2004, pp. 79–87)
also focus on these models, because the key features carry through to hier-
archical models. Fortin and Dale (2005, pp. 229–233) indicate that spatial
autoregressive models may play a different role in ecology, although reviews
like Dormann et al. (2007) suggest that they may be of use.

In this section, we have followed Waller and Gotway (2004, Chap. 9) quite
closely, as their examples highlight issues such as transforming the response
variable and using weights to try to handle heteroskedasticity.

From a statistical point of view, it is possible to account for correlated
observations by considering a structure of the following kind in the model.
If the vector of response variables is multivariate normal, we can express the
model as follows:

Y = µ + e,

where µ is the vector of area means, which can be modelled in different ways
and e is the vector of random errors, which we assume is normally distributed
with zero mean and generic variance V . The mean is often supposed to depend
on a linear term on some covariates X, so that we will substitute the mean
by XTβ in the model. On the other hand, correlation between areas is taken
into account by considering a specific form of the variance matrix V .

For the case of non-Normal variables, we could transform the original data
to achieve the desired Normality. Hence, the techniques described below can
still be applied on the transformed data. In principle, many correlation struc-
tures could be feasible in order to account for spatial correlation. However, we
focus on two approaches that are commonly used in practise,such as SAR (Si-
multaneous Autoregressive) and CAR (Conditionally Autoregressive) models.

In Chap. 9, we took the mean of the counts of leukaemia cases by tract
as our best understanding of the data generation process, supplementing this
with the constant risk approach to try to handle heterogeneity coming from
variations in tract populations. One of the alternatives examined by Waller
and Gotway (2004, p. 348) is to take a log transformation of the rate:

10.2 Spatial Statistics Approaches 275

Zi = log
1000(Yi + 1)

ni
.

The transformed incidence proportions are not yet normal, with three
outliers, tracts with small populations but unexpectedly large case counts.
They could be smoothed away, but may in fact be interesting, as the patterns
they display may be related to substantive covariates, such as closeness to TCE
locations. As covariates, we have used the inverse distance to the closest TCE
(PEXPOSURE), the proportion of people aged 65 or higher (PCTAGE65P)
and the proportion of people who own their own home (PCTOWNHOME).

To set the scene, let us start with a linear model of the relationship be-
tween the transformed incidence proportions and the covariates. Note that
most model fitting functions accept Spatial*DataFrame objects as their data

argument values, and simply treat them as regular data.frame objects. This
is not by inheritance, but because the same access methods are provided (see
p. 35).

> library(spdep)

> nylm <- lm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8)

> summary(nylm)

Call:

lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8)

Residuals:

Min 1Q Median 3Q Max

-1.7417 -0.3957 -0.0326 0.3353 4.1398

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5173 0.1586 -3.26 0.0012 **

PEXPOSURE 0.0488 0.0351 1.39 0.1648

PCTAGE65P 3.9509 0.6055 6.53 3.2e-10 ***

PCTOWNHOME -0.5600 0.1703 -3.29 0.0011 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.657 on 277 degrees of freedom

Multiple R-squared: 0.193, Adjusted R-squared: 0.184

F-statistic: 22.1 on 3 and 277 DF, p-value: 7.3e-13

> NY8$lmresid <- residuals(nylm)

Figure 10.1 shows the spatial distribution of residual values for the study
area census tracts. The two census variables appear to contribute for explain-
ing the variance in the response variable, but exposure to TCE does not.
Moreover, although there is less spatial autocorrelation in the residuals from

276 10 Modelling Areal Data

−2

−1

0

1

2

3

4

5

Fig. 10.1. Residuals from the linear model of transformed incidence proportions;
TCE site locations shown for comparative purposes

the model with covariates than in the null model, it is clear that there is in-
formation in the residuals that we should try to use. An exact test for spatial
autocorrelation in the residuals leads to similar conclusions.

Since the Moran test is intended to detect spatial autocorrelation, we can
try to fit a model taking this into account. We should not, however, forget that
the misspecifications detected by Moran’s I can have a range of causes (see
Sect. 9.4). It is also the case that if the fitted model exhibits multi-collinearity,
the results of the test may be affected because of the numerical consequences
of the model matrix not being of full rank for the expectation and variance of
the statistic.

> NYlistw <- nb2listw(NY_nb, style = "B")

> lm.morantest(nylm, NYlistw)

Global Moran's I for regression residuals

data:

10.2 Spatial Statistics Approaches 277

model: lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data = NY8)

weights: NYlistw

Moran I statistic standard deviate = 2.638, p-value = 0.004169

alternative hypothesis: greater

sample estimates:

Observed Moran's I Expectation Variance

0.083090 -0.009891 0.001242

10.2.1 Simultaneous Autoregressive Models

The SAR specification uses a regression on the values from the other areas
to account for the spatial dependence. This means that the error terms ε are
modelled so that they depend on each other in the following way:

ei =
m∑

i=1

bijei + εi.

Here, εi are used to represent residual errors, which are assumed to be in-
dependently distributed according to a Normal distribution with zero mean
and diagonal covariance matrix Σε with elements σ2

εi
, i = 1, . . . , m (the same

variance σ2
ε is often considered though). The bij values are used to represent

spatial dependence between areas. bii must be set to zero so that each area is
not regressed on itself.

Note that if we express the error terms as e = B(Y −XTβ)+ ε, the model
can also be expressed as

Y = XTβ + B(Y − XTβ) + ε.

Hence, this model can be formulated in a matrix form as follows:

(I − B)(Y − XTβ) = ε,

where B is a matrix that contains the dependence parameters bij and I is the
identity matrix of the required dimension. It is important to point out that
in order for this SAR model to be well defined, the matrix I − B must be
non-singular.

Under this model, Y is distributed according to a multivariate normal with
mean

E[Y] = XTβ

and covariance matrix

Var[Y] = (I − B)−1Σε(I − BT)−1.

278 10 Modelling Areal Data

Often Σε is taken to depend on a single parameter σ2, so that Σε = σ2I
and then Var[Y] simplifies to

Var[Y] = σ2(I − B)−1(I − BT)−1.

It is also possible to specify Σε as a diagonal matrix of weights associated
with heterogeneity among the observations.

A useful re-parametrisation of this model can be obtained by writing
B = λW , where λ is a spatial autocorrelation parameter and W is a ma-
trix that represents spatial dependence – it is often assumed to be symmetric.
These structures can be chosen among those described in Chap. 9. With this
specification, the variance of Y becomes

Var[Y] = σ2(I − λW)−1(I − λWT)−1.

These models can be estimated efficiently by maximum likelihood. In R
this can be done by using function spautolm in package spdep. The model can
be specified using a formula for the linear predictor, whilst matrix W must be
passed as a listw object. To create this object from the list of neighbours we
can use function nb2listw, which will take an object of class nb, as explained
in Chap. 9.

The following code shows how to fit a simultaneous autoregression to the
chosen model. We have fitted the standard model and the weighted model
using the population size in 1980 (according to the US Census) in the areas as
weights. This reproduces the example developed in Waller and Gotway (2004,
Chap. 9, pp. 375–379), and the reader is referred to their discussion for more
information. In the call to nb2listw, we specified style = "B" to construct W
using a binary indicator of neighbourhood.

> nysar <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, listw = NYlistw)

> summary(nysar)

Call:

spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NYlistw)

Residuals:

Min 1Q Median 3Q Max

-1.567536 -0.382389 -0.026430 0.331094 4.012191

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.618193 0.176784 -3.4969 0.0004707

PEXPOSURE 0.071014 0.042051 1.6888 0.0912635

PCTAGE65P 3.754200 0.624722 6.0094 1.862e-09

PCTOWNHOME -0.419890 0.191329 -2.1946 0.0281930

10.2 Spatial Statistics Approaches 279

Lambda: 0.04049 LR test value: 5.244 p-value: 0.022026

Log likelihood: -276.1

ML residual variance (sigma squared): 0.4139, (sigma: 0.6433)

Number of observations: 281

Number of parameters estimated: 6

AIC: 564.2

According to the results obtained it seems that there is significant spatial
correlation in the residuals because the estimated value of λ is 0.0405 and
the p-value of the likelihood ratio test is 0.0220. In the likelihood ratio test
we compare the model with no spatial autocorrelation (i.e. λ = 0) to the
one which allows for it (i.e. the fitted model with non-zero autocorrelation
parameter).

The proximity to a TCE seems not to be significant, although its p-value
is close to being significant at the 95% level and it would be advisable not
to discard a possible association and to conduct further research on this. The
other two covariates are significant, suggesting that census tracts with larger
percentages of older people and with lower percentages of house owners have
higher transformed incidence rates.

However, this model does not account for the heterogeneous distribution
of the population by tracts beyond the correction introduced in transform-
ing incidence proportions. Weighted version of these models can be fitted so
that tracts are weighted proportionally to the inverse of their population size.
For this purpose, we include the parameter weights=POP8 in the call to the
function lm.

> nylmw <- lm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

+ weights = POP8)

> summary(nylmw)

Call:

lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

weights = POP8)

Residuals:

Min 1Q Median 3Q Max

-129.07 -14.71 5.82 25.62 70.72

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.7784 0.1412 -5.51 8.0e-08 ***

PEXPOSURE 0.0763 0.0273 2.79 0.0056 **

PCTAGE65P 3.8566 0.5713 6.75 8.6e-11 ***

PCTOWNHOME -0.3987 0.1531 -2.60 0.0097 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

280 10 Modelling Areal Data

Residual standard error: 33.5 on 277 degrees of freedom

Multiple R-squared: 0.198, Adjusted R-squared: 0.189

F-statistic: 22.8 on 3 and 277 DF, p-value: 3.38e-13

> NY8$lmwresid <- residuals(nylmw)

Starting with the weighted linear model, we can see that the TCE expo-
sure variable has become significant with the expected sign, indicating that
tracts closer to the TCE sites have slightly higher transformed incidence pro-
portions. The other two covariates now also have more significant coefficients.
Figure 10.2 shows that information has been shifted from the model residuals
to the model itself, with little remaining spatial structure visible on the map.

> lm.morantest(nylmw, NYlistw)

Global Moran's I for regression residuals

data:

−2

−1

0

1

2

3

4

5

Fig. 10.2. Residuals from the weighted linear model of transformed incidence pro-
portions; TCE site locations shown for comparative purposes

10.2 Spatial Statistics Approaches 281

model: lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data = NY8, weights = POP8)

weights: NYlistw

Moran I statistic standard deviate = 0.4773, p-value = 0.3166

alternative hypothesis: greater

sample estimates:

Observed Moran's I Expectation Variance

0.007533 -0.009310 0.001245

The Moran tests for regression residuals can also be used with a weighted
linear model object. The results are interesting, suggesting that the mis-
specification detected by Moran’s I is in fact related to heteroskedasticity
more than to spatial autocorrelation. We can check this for the SAR model
too, since spautolm also takes a weights argument:

> nysarw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, listw = NYlistw, weights = POP8)

> summary(nysarw)

Call:

spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NYlistw, weights = POP8)

Residuals:

Min 1Q Median 3Q Max

-1.48488 -0.26823 0.09489 0.46552 4.28343

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.797063 0.144054 -5.5331 3.146e-08

PEXPOSURE 0.080545 0.028334 2.8428 0.004473

PCTAGE65P 3.816731 0.576037 6.6258 3.453e-11

PCTOWNHOME -0.380778 0.156507 -2.4330 0.014975

Lambda: 0.009564 LR test value: 0.3266 p-value: 0.56764

Log likelihood: -251.6

ML residual variance (sigma squared): 1104, (sigma: 33.23)

Number of observations: 281

Number of parameters estimated: 6

AIC: 515.2

The coefficients of the covariates change slightly in the new model, and all
the coefficient p-values drop substantially. In this weighted SAR fit, proximity
to a TCE site becomes significant. However, there are no traces of spatial
autocorrelation left after adjusting for the heterogeneous size of the popu-
lation. This suggests that the spatial variation in population between tracts
is responsible for the observed residual spatial correlation after adjusting for
covariates.

282 10 Modelling Areal Data

To compare both models and choose the best one, we use Akaike’s In-
formation Criterion (AIC) reported in the model summaries. The AIC is a
weighted sum of the log-likelihood of the model and the number of fitted co-
efficients; according to the criterion, better models are those with the lower
values of the AIC. Hence, the weighted model provides a better fitting since
its AIC is considerably lower. This indicates the importance of accounting for
heterogeneous populations in the analysis of this type of lattice data.

10.2.2 Conditional Autoregressive Models

The CAR specification relies on the conditional distribution of the spatial error
terms. In this case, the distribution of ei conditioning on e−i (the vector of all
random error terms minus ei itself) is given. Instead of the whole e−i vector,
only the neighbours of area i, defined in a chosen way, are used. We represent
them by ej∼i. Then, a simple way of putting the conditional distribution of
ei is

ei|ej∼i ∼ N
(∑

j∼i

cijej∑
j∼i cij

,
σ2

ei∑
j∼i cij

)
,

where cij are dependence parameters similar to bij . However, specifying the
conditional distributions of the error terms does not imply that the joint
distribution exists. To have a proper distribution some constraints must be set
on the parameters of the model. The reader is referred to Schabenberger and
Gotway (2005, pp. 338–339) for a detailed description of CAR specifications.
For our modelling purposes, the previous guidelines will be enough to obtain
a proper CAR specification in most cases.

To fit a CAR model, we can use function spautolm again. This time we set
the argument family="CAR" to specify that we are fitting this type of models.

> nycar <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, family = "CAR", listw = NYlistw)

> summary(nycar)

Call:

spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NYlistw, family = "CAR")

Residuals:

Min 1Q Median 3Q Max

-1.539732 -0.384311 -0.030646 0.335126 3.808848

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.648362 0.181129 -3.5796 0.0003442

PEXPOSURE 0.077899 0.043692 1.7829 0.0745986

10.2 Spatial Statistics Approaches 283

PCTAGE65P 3.703830 0.627185 5.9055 3.516e-09

PCTOWNHOME -0.382789 0.195564 -1.9574 0.0503053

Lambda: 0.08412 LR test value: 5.801 p-value: 0.016018

Log likelihood: -275.8

ML residual variance (sigma squared): 0.4076, (sigma: 0.6384)

Number of observations: 281

Number of parameters estimated: 6

AIC: 563.7

The estimated coefficients of the covariates in the model are very similar
to those obtained with the SAR models. Nevertheless, the p-values of two
covariates, the distance to the nearest TCE and the percentage of people
owning a home, are slightly above the 0.05 threshold. The likelihood ratio
test indicates that there is significant spatial autocorrelation and the estimated
value of λ is 0.0841.

Considering a weighted regression, using the population size as weights, for
the same model to account for the heterogeneous distribution of the population
completely removes the spatial autocorrelation in the data. The coefficients of
the covariates do not change much and all of them become significant. Hence,
modelling spatial autocorrelation by means of SAR or CAR specifications does
not change the results obtained; Waller and Gotway (2004, pp. 375–379) give
a complete discussion of these results.1

> nycarw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, family = "CAR", listw = NYlistw, weights = POP8)

> summary(nycarw)

Call:

spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NYlistw, weights = POP8, family = "CAR")

Residuals:

Min 1Q Median 3Q Max

-1.491042 -0.270906 0.081435 0.451556 4.198134

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.790154 0.144862 -5.4545 4.910e-08

PEXPOSURE 0.081922 0.028593 2.8651 0.004169

PCTAGE65P 3.825858 0.577720 6.6223 3.536e-11

PCTOWNHOME -0.386820 0.157436 -2.4570 0.014010

1 The fitted coefficient values of the weighted CAR model do not exactly reproduce
those of Waller and Gotway (2004, p. 379), although the spatial coefficient is re-
produced. In addition, the model cannot be fit with S-PLUS™ SpatialStats module
slm, as the product of the two components of the model covariance matrix is not
symmetric, while the two components taken separately are. This suggests that
caution in using current implementations of weighted CAR models is justified.

284 10 Modelling Areal Data

Lambda: 0.02242 LR test value: 0.3878 p-value: 0.53343

Log likelihood: -251.6

ML residual variance (sigma squared): 1103, (sigma: 33.21)

Number of observations: 281

Number of parameters estimated: 6

AIC: 515.1

10.2.3 Fitting Spatial Regression Models

The spautolm function fits spatial regression models by maximum likelihood,
by first finding the value of the spatial autoregressive coefficient, which max-
imises the log likelihood function for the model family chosen, and then fitting
the other coefficients by generalised least squares at that point. This means
that the spatial autoregressive coefficient can be found by line search using
optimize, rather than by optimising over all the model parameters at the same
time.

The most demanding part of the functions called to optimise the spatial
autoregressive coefficient is the computation of the Jacobian, the log determi-
nant of the n × n matrix |I − B|, or |I − λW | in our parametrisation. As n
increases, the use of the short-cut of

log(|I − λW |) = log
(n∏

i=1

(1 − λζi)
)
,

where ζi are the eigenvalues of W , becomes more difficult. The default method
of method="full" uses eigenvalues, and can thus also set the lower and upper
bounds for the line search for λ accurately (as [1/mini(ζi), 1/maxi(ζi)]), but
is not feasible for large n. It should also be noted that although eigenvalues are
computed for intrinsically asymmetric spatial weights matrices, their imagi-
nary parts are discarded, so that even for method="full", the consequences of
using such asymmetric weights matrices are unknown.

Alternative approaches involve finding the log determinant of a Cholesky
decomposition of the sparse matrix (I − λW) directly. Here it is not possible
to pre-compute eigenvalues, so one log determinant is computed for each value
of λ used, but the number needed is in general not excessive, and much larger
n become feasible on ordinary computers. A number of different sparse ma-
trix approaches have been tried, with the use of Matrix and method="Matrix",
the one suggested currently. All of the sparse matrix approaches to comput-
ing the Jacobian require that matrix W be symmetric or at least similar to
symmetric, thus providing for weights with "W" and "S" styles based on sym-
metric neighbour lists and symmetric general spatial weights, such as inverse
distance. Matrices that are similar to symmetric have the same eigenvalues, so
that the eigenvalues of symmetric W ∗ = D1/2WD1/2 and row-standardised

10.2 Spatial Statistics Approaches 285

W = DB are the same, for symmetric binary or general weights matrix B,
and D a diagonal matrix of inverse row sums of B, dii = 1/

∑n
j=1 bij (Ord,

1975, p. 125).

> nysarwM <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, family = "SAR", listw = NYlistw, weights = POP8,

+ method = "Matrix")

> summary(nysarwM)

Call:

spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NYlistw, weights = POP8, family = "SAR", method = "Matrix")

Residuals:

Min 1Q Median 3Q Max

-1.48488 -0.26823 0.09489 0.46552 4.28343

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.797063 0.144054 -5.5331 3.146e-08

PEXPOSURE 0.080545 0.028334 2.8428 0.004473

PCTAGE65P 3.816731 0.576037 6.6258 3.453e-11

PCTOWNHOME -0.380778 0.156507 -2.4330 0.014975

Lambda: 0.009564 LR test value: 0.3266 p-value: 0.56764

Log likelihood: -251.6

ML residual variance (sigma squared): 1104, (sigma: 33.23)

Number of observations: 281

Number of parameters estimated: 6

AIC: 515.2

The output from fitting the weighted SAR model using functions from
the Matrix package is identical with that from using the eigenvalues of W .
Thanks to help from the Matrix package authors, Douglas Bates and Martin
Mächler; additional facilities have been made available allowing the Cholesky
decomposition to be computed once and updated for new values of the spatial
coefficient. An internal vectorised version of this update method has also been
made available, making the look-up time for many coefficient values small.

If it is of interest to examine values of the log likelihood function for a
range of values of λ, the llprof argument may be used to give the number
of equally spaced λ values to be chosen between the inverse of the smallest
and largest eigenvalues for method="full", or a sequence of such values more
generally.

286 10 Modelling Areal Data

−0.3 −0.2 −0.1 0.0 0.1

λ

lo
g

lik
el

ih
oo

d

weighted SAR
SAR

−
25

0
−

35
0

−
45

0

Fig. 10.3. Log likelihood values for a range of values of λ, weighted and unweighted
SAR models; fitted spatial coefficient values and maxima shown

> 1/range(eigenw(NYlistw))

[1] -0.3029 0.1550

> nysar_ll <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, family = "SAR", listw = NYlistw, llprof = 100)

> nysarw_ll <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, family = "SAR", listw = NYlistw, weights = POP8,

+ llprof = 100)

Figure 10.3 shows the shape of the values of the log likelihood function
along the feasible range of λ for the weighted and unweighted SAR models.
We can see easily that the curves are very flat at the maxima, meaning that
we could shift λ a good deal without impacting the function value much. The
figure also shows the sharp fall-off in function values as the large negative
values of the Jacobian kick in close to the ends of the feasible range.

Finally, family="SMA" for simultaneous moving average models is also
available within the same general framework, but always involves handling
dense matrices for fitting.
> nysmaw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, family = "SMA", listw = NYlistw, weights = POP8)

> summary(nysmaw)

Call:

spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NYlistw, weights = POP8, family = "SMA")

Residuals:

Min 1Q Median 3Q Max

-1.487080 -0.268990 0.093956 0.466055 4.284087

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.795243 0.143749 -5.5321 3.163e-08

PEXPOSURE 0.080153 0.028237 2.8386 0.004531

PCTAGE65P 3.820316 0.575463 6.6387 3.165e-11

PCTOWNHOME -0.382529 0.156160 -2.4496 0.014302

10.3 Mixed-Effects Models 287

Lambda: 0.009184 LR test value: 0.3077 p-value: 0.57909

Log likelihood: -251.6

ML residual variance (sigma squared): 1105, (sigma: 33.24)

Number of observations: 281

Number of parameters estimated: 6

AIC: 515.2

Although there may be computing environments within which it seems
easier to fit spatial regression models, arguably few give the analyst both rea-
sonable defaults and the opportunity to examine in as much detail as is needed
in the internal workings of the methods used, and of their implementations
in software. Naturally, improvements will need to be made, perhaps including
the fitting of more than one spatial autocorrelation parameter.

10.3 Mixed-Effects Models

The errors ei which appear in the previous models are used to account for
between-area variation, following a specified correlation structure. These terms
are usually known as random effects because, contrary to what happens with
fixed effects (the covariates), the value of the random effect can change from
area to area. The range of application of random effects is quite wide, and they
are often used to model different types of interaction between the observations.
Although mixed-effects models belong to a different tradition from the spatial
models discussed above, they are central to multi-level models and small area
estimation, both of which can also be used in the analysis of spatial data. In
the spatial context, Schabenberger and Gotway (2005, pp. 325–334) discuss
linear mixed-effects models; other coverage is to be found in Pinheiro and
Bates (2000, pp. 230–232, 237–238) for the implementation used here.

Using a similar notation as in previous sections, mixed-effect models
(McCulloch and Searle, 2001) can be formulated as

Y = Xβ + Ze + ε.

Vector e represents the random effects, whilst Z is used to account for their
structure. The distribution of e is assumed to be Normal with mean zero and
generic covariance matrix Σe. This structure can reflect the influence of several
elements of e on a single observation. Z is a design matrix that may be fixed
or depend on any parameter. For example, Z can be set to a specific value
to reproduce a SAR or CAR specification but, in this case, Z also depends
on λ, which is another parameter to be estimated. Similar models may also
be specified for areal data with point support using functions in the spBayes
package.

Maximum Likelihood or Restricted Maximum Likelihood (McCulloch and
Searle, 2001) are often employed to fit mixed-effects models. Packages nlme

and lme4 (Pinheiro and Bates, 2000) can fit these types of models. These

288 10 Modelling Areal Data

packages allow the specification of different types of covariance matrices of
the random effects, including spatial structure.

The following example illustrates how to fit a mixed-effects model using
a correlation matrix, which depends on the distance between the centroids of
the areas. First, we need to specify the correlation structure between the areas.
This correlation structure is similar to those used in geostatistics and we have
chosen a Gaussian variogram based on the Euclidean distances between the
centroids of the regions.

> library(nlme)

> NY8$x <- coordinates(NY8)[, 1]/1000

> NY8$y <- coordinates(NY8)[, 2]/1000

> sp1 <- corSpatial(1, form = ~x + y, type = "gaussian")

> scor <- Initialize(sp1, as(NY8, "data.frame")[, c("x",

+ "y")], nugget = FALSE)

Once we have specified the correlation structure using corSpatial, we need
to set up the model. The fixed part of the model is as in the previous SAR
and CAR models. In the random part of the model we need to include a
random effect per area. This is done by including random= ∼ 1|AREAKEY in the
call to lme. The fitting functions require that the Spatial*DataFrame object be
coerced to a data.frame object in this case.

> spmodel <- lme(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ random = ~1 | AREAKEY, data = as(NY8, "data.frame"),

+ correlation = scor, method = "ML")

> summary(spmodel)

Linear mixed-effects model fit by maximum likelihood

Data: as(NY8, "data.frame")

AIC BIC logLik

571.5 596.9 -278.7

Random effects:

Formula: ~1 | AREAKEY

(Intercept) Residual

StdDev: 0.6508 0.04671

Correlation Structure: Gaussian spatial correlation

Formula: ~x + y | AREAKEY

Parameter estimate(s):

range

0.01929

Fixed effects: Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME

Value Std.Error DF t-value p-value

(Intercept) -0.517 0.1586 277 -3.262 0.0012

PEXPOSURE 0.049 0.0351 277 1.393 0.1648

PCTAGE65P 3.951 0.6055 277 6.525 0.0000

10.4 Spatial Econometrics Approaches 289

PCTOWNHOME -0.560 0.1703 277 -3.288 0.0011

Correlation:

(Intr) PEXPOS PCTAGE

PEXPOSURE -0.411

PCTAGE65P -0.587 -0.075

PCTOWNHOME -0.741 0.082 0.147

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-0.191116 -0.043422 -0.003575 0.036788 0.454251

Number of Observations: 281

Number of Groups: 281

In this case for the un-weighted model, the coefficients of the fixed part are
the same as for the linear model. The random effects can be arranged so that
they follow a SAR or CAR specification, and it can be seen as a particular
structure for Z. Note that when a SAR specification is added, Z, which models
the structure of the random effects, may depend on further parameters.

10.4 Spatial Econometrics Approaches

One of the attractions of spatial data analysis is the wide range of scientific dis-
ciplines involved. Naturally, this leads to multiple approaches to many kinds of
analysis, including accepted ways of applying tests and model fitting methods.
It also leads to some sub-communities choosing their own sets of tools, not
infrequently diverging from other sub-communities. During the 2003 Distrib-
uted Computational Statistics meeting, surprise and amusement was caused
by the remark that the Internet domain www.spatial-statistics.com con-
tains material chiefly relating to real estate research. But this connection is
in fact quite reasonable, as real estate generates a lot of spatial data, and
requires suitable methods. Indeed, good understanding of real estate markets
and financing is arguably as important to society as a good understanding of
the spatial dimensions of disease incidence.

Spatial econometrics is authoritatively described by Anselin (1988, 2002),
with additional comments by Bivand (2002, 2006) with regard to doing spa-
tial econometrics in R. While the use of weights, as we have seen above, has
resolved a serious model mis-specification in public health data, it would be
more typical for econometricians to test first for heteroskedasticity, and to try
to relieve it by adjusting coefficient standard errors:
> library(lmtest)

> bptest(nylm)

studentized Breusch-Pagan test

data: nylm

BP = 9.214, df = 3, p-value = 0.02658

290 10 Modelling Areal Data

The Breusch–Pagan test (Johnston and DiNardo, 1997, pp. 198–200) re-
sults indicate the presence of heteroskedasticity when the residuals from the
original linear model are regressed on the right-hand-side variables – the de-
fault test set. This might suggest the need to adjust the estimated coefficient
standard errors using a variance–covariance matrix (Zeileis, 2004) taking het-
eroskedasticity into account:

> library(sandwich)

> coeftest(nylm)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5173 0.1586 -3.26 0.0012 **

PEXPOSURE 0.0488 0.0351 1.39 0.1648

PCTAGE65P 3.9509 0.6055 6.53 3.2e-10 ***

PCTOWNHOME -0.5600 0.1703 -3.29 0.0011 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> coeftest(nylm, vcov = vcovHC(nylm, type = "HC4"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5173 0.1617 -3.20 0.00154 **

PEXPOSURE 0.0488 0.0343 1.42 0.15622

PCTAGE65P 3.9509 0.9992 3.95 9.8e-05 ***

PCTOWNHOME -0.5600 0.1672 -3.35 0.00092 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There are only minor changes in the standard errors, and they do not affect
our inferences.2

In spatial econometrics, Moran’s I is supplemented by Lagrange Multiplier
tests fully described in Anselin (1988, 2002) and Anselin et al. (1996). The
development of these tests, as more generally in spatial econometrics, seems
to assume the use of row-standardised spatial weights, so we move from sym-
metric binary weights used above to row-standardised similar to symmetric
weights. A key concern is to try to see whether the data generating process
is a spatial error SAR or a spatial lag SAR. The former is the SAR that we
have already met, while the spatial lag model includes only the endogenous
spatially lagged dependent variable in the model.

> NYlistwW <- nb2listw(NY_nb, style = "W")

> res <- lm.LMtests(nylm, listw = NYlistwW, test = "all")

> tres <- t(sapply(res, function(x) c(x$statistic, x$parameter,

2 Full details of the test procedures can be found in the references to the function
documentation in lmtest and sandwich.

10.4 Spatial Econometrics Approaches 291

+ x$p.value)))

> colnames(tres) <- c("Statistic", "df", "p-value")

> printCoefmat(tres)

Statistic df p-value

LMerr 5.17 1.00 0.02

LMlag 8.54 1.00 0.0035

RLMerr 1.68 1.00 0.20

RLMlag 5.05 1.00 0.02

SARMA 10.22 2.00 0.01

The robust LM tests take into account the alternative possibility, that is
the LMerr test will respond to both an omitted spatially lagged dependent
variable and spatially autocorrelated residuals, while the robust RLMerr is de-
signed to test for spatially autocorrelated residuals in the possible presence of
an omitted spatially lagged dependent variable. The lm.LMtests function here
returns a list of five LM tests, which seem to point to a spatial lag specifica-
tion. Further variants have been developed to take into account both spatial
autocorrelation and heteroskedasticity, but are not yet available in R. Again,
it is the case that if the fitted model exhibits multicollinearity, the results of
the tests will be affected.

The spatial lag model takes the following form:

y = ρWy + Xβ + e,

where y is the endogenous variable, X is a matrix of exogenous variables,
and W is the spatial weights matrix. This contrasts with the spatial Durbin
model, including the spatial lags of the covariates (independent variables) with
coefficients γ:

y = ρWy + Xβ + WXγ + e,

and the spatial error model:

y − λWy = Xβ − λWXβ + e,

(I − λW)y = (I − λW)Xβ + e,

which can also be written as

y = Xβ + u,

u = λWu + e.

First let us fit a spatial lag model by maximum likelihood, once again
finding the spatial lag coefficient by line search, then the remaining coefficients
by generalised least squares:

292 10 Modelling Areal Data

> nylag <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, listw = NYlistwW)

> summary(nylag)

Call:

lagsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NYlistwW)

Residuals:

Min 1Q Median 3Q Max

-1.626029 -0.393321 -0.018767 0.326616 4.058315

Type: lag

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.505343 0.155850 -3.2425 0.001185

PEXPOSURE 0.045543 0.034433 1.3227 0.185943

PCTAGE65P 3.650055 0.599219 6.0914 1.120e-09

PCTOWNHOME -0.411829 0.169095 -2.4355 0.014872

Rho: 0.2252 LR test value: 7.75 p-value: 0.0053703

Asymptotic standard error: 0.07954 z-value: 2.831 p-value: 0.0046378

Wald statistic: 8.015 p-value: 0.0046378

Log likelihood: -274.9 for lag model

ML residual variance (sigma squared): 0.41, (sigma: 0.6403)

Number of observations: 281

Number of parameters estimated: 6

AIC: 561.7, (AIC for lm: 567.5)

LM test for residual autocorrelation

test value: 0.6627 p-value: 0.41561

> bptest.sarlm(nylag)

studentized Breusch-Pagan test

data:

BP = 7.701, df = 3, p-value = 0.05261

The spatial econometrics model fitting functions can also use sparse matrix
techniques, but when the eigenvalue technique is used, asymptotic standard
errors are calculated for the spatial coefficient. There is a numerical snag here,
that if the variables in the model are scaled such that the other coefficients
are scaled differently from the spatial autocorrelation coefficient, the inversion
of the coefficient variance–covariance matrix may fail. The correct resolution
is to re-scale the variables, but the tolerance of the inversion function called
internally may be relaxed. In addition, an LM test on the residuals is carried
out, suggesting that no spatial autocorrelation remains, and a spatial Breusch–
Pagan test shows a lessening of heteroskedasticity.

10.4 Spatial Econometrics Approaches 293

Fitting a spatial Durbin model, a spatial lag model including the spatially
lagged explanatory variables (but not the lagged intercept when the spatial
weights are row standardised), we see that the fit is not improved significantly.

> nymix <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, listw = NYlistwW, type = "mixed")

> nymix

Call:

lagsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NYlistwW, type = "mixed")

Type: mixed

Coefficients:

rho (Intercept) PEXPOSURE PCTAGE65P

0.17578 -0.32260 0.09039 3.61356

PCTOWNHOME lag.PEXPOSURE lag.PCTAGE65P lag.PCTOWNHOME

-0.02687 -0.05188 0.13123 -0.69950

Log likelihood: -272.7

> anova(nymix, nylag)

Model df AIC logLik Test L.Ratio p-value

nymix 1 9 563 -273 1

nylag 2 6 562 -275 2 4 0.22

If we impose the Common Factor constraint on the spatial Durbin model,
that γ = −λβ, we fit the spatial error model:

> nyerr <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, listw = NYlistwW)

> summary(nyerr)

Call:errorsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data = NY8, listw = NYlistwW)

Residuals:

Min 1Q Median 3Q Max

-1.628589 -0.384745 -0.030234 0.324747 4.047906

Type: error

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.58662 0.17471 -3.3577 0.000786

PEXPOSURE 0.05933 0.04226 1.4039 0.160335

PCTAGE65P 3.83746 0.62345 6.1552 7.496e-10

PCTOWNHOME -0.44428 0.18897 -2.3510 0.018721

Lambda: 0.2169 LR test value: 5.425 p-value: 0.019853

294 10 Modelling Areal Data

Asymptotic standard error: 0.08504 z-value: 2.551 p-value: 0.010749

Wald statistic: 6.506 p-value: 0.010749

Log likelihood: -276 for error model

ML residual variance (sigma squared): 0.4137, (sigma: 0.6432)

Number of observations: 281

Number of parameters estimated: 6

AIC: 564, (AIC for lm: 567.5)

Both the spatial lag and Durbin models appear to fit the data somewhat
better than the spatial error model. However, in relation to our initial interest
in the relationship between transformed incidence proportions and exposure to
TCE sites, we are no further forward than we were with the linear model, and
although we seem to have reduced the mis-specification found in the linear
model by choosing the spatial lag model, the reduction in error variance is
only moderate.

Spatial econometrics has also seen the development of alternatives to max-
imum likelihood methods for fitting models. Code for two of these has been
contributed by Luc Anselin, and is available in spdep. For example, the spa-
tial lag model may be fitted by analogy with two-stage least squares in a
simultaneous system of equations, by using the spatial lags of the explanatory
variables as instruments for the spatially lagged dependent variable.

> nystsls <- stsls(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, listw = NYlistwW)

> summary(nystsls)

Call:

stsls(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NYlistwW)

Residuals:

Min 1Q Median 3Q Max

-1.593609 -0.368930 -0.029486 0.335873 3.991544

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Rho 0.409651 0.171972 2.3821 0.017215

(Intercept) -0.495567 0.155743 -3.1820 0.001463

PEXPOSURE 0.042846 0.034474 1.2428 0.213924

PCTAGE65P 3.403617 0.636631 5.3463 8.977e-08

PCTOWNHOME -0.290416 0.201743 -1.4395 0.149998

Residual variance (sigma squared): 0.4152, (sigma: 0.6444)

The implementation acknowledges that the estimate of the spatial coeffi-
cient will be biased, but because it can be used with very large data sets and
does provide an alternative, it is worth mentioning. It is interesting that when
the robust argument is chosen, adjusting not only standard errors but also

10.4 Spatial Econometrics Approaches 295

coefficient values for heteroskedasticity over and above the spatial autocorre-
lation already taken into account, we see that the coefficient operationalising
TCE exposure moves towards significance:

> nystslsR <- stsls(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, listw = NYlistwW, robust = TRUE)

> summary(nystslsR)

Call:

stsls(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NYlistwW, robust = TRUE)

Residuals:

Min 1Q Median 3Q Max

-1.559044 -0.361838 -0.016518 0.353569 4.092810

Coefficients:

Estimate Robust std. Error z value Pr(>|z|)

Rho 0.411452 0.184989 2.2242 0.026135

(Intercept) -0.499489 0.156801 -3.1855 0.001445

PEXPOSURE 0.056973 0.029993 1.8995 0.057494

PCTAGE65P 3.030160 0.955171 3.1724 0.001512

PCTOWNHOME -0.267249 0.203269 -1.3148 0.188591

Asymptotic robust residual variance: 0.409, (sigma: 0.6395)

Finally, GMerrorsar is an implementation of the Kelejian and Prucha (1999)
Generalised Moments (GM) estimator for the autoregressive parameter in a
spatial model. It uses a GM approach to optimise λ and σ2 jointly, and where
the numerical search surface is not too flat, can be an alternative to maximum
likelihood methods when n is large.

> nyGMerr <- GMerrorsar(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, listw = NYlistwW)

> summary(nyGMerr)

Call:GMerrorsar(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data = NY8, listw = NYlistwW)

Residuals:

Min 1Q Median 3Q Max

-1.640399 -0.384014 -0.031843 0.318732 4.057979

Type: GM SAR estimator

Coefficients: (GM standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.577906 0.172566 -3.3489 0.0008114

PEXPOSURE 0.057984 0.041303 1.4039 0.1603604

PCTAGE65P 3.848771 0.621105 6.1967 5.768e-10

PCTOWNHOME -0.458145 0.186666 -2.4544 0.0141138

296 10 Modelling Areal Data

0.0 0.1 0.2 0.4

0.
30

0.
40

0.
50

λ

σ
2

GM ML

0.3

Fig. 10.4. Numerical search surface of the generalised moments estimator with GM
and ML optima marked

Lambda: 0.1939 LR test value: 5.361 p-value: 0.020594

Log likelihood: -276.0 for GM model

ML residual variance (sigma squared): 0.4146, (sigma: 0.6439)

Number of observations: 281

Number of parameters estimated: 6

AIC: 564.1, (AIC for lm: 567.5)

Figure 10.4 shows, however, that there is much more variability in the
surface on the σ2 axis than on the λ axis, and so the optimiser may stop its
search when the default joint criterion for termination is satisfied, rather than
searching harder along λ. Of course, non-default settings may be passed to
the optimiser to tune its performance, but this too requires care and insight.

10.5 Other Methods

Other methods can be used to model dependency between areas. In this sec-
tion we introduce some of them, based in part on the recent applied survey
reported by Dormann et al. (2007). A specific difficulty that we met above
when considering mixed-effects models is that available functions for model
fitting use point support rather than polygon support. This means that our
prior description of the relationships between observations are distance-based,
and so very similar to those described in detail in Chap. 8, where the focus
was more on interpolation than modelling. These methods are discussed in
the spatial context by Schabenberger and Gotway (2005, pp. 352–382) and
Waller and Gotway (2004, pp. 380–409), and hierarchical methods are being
employed with increasing frequency (Banerjee et al., 2004).

10.5 Other Methods 297

10.5.1 GAM, GEE, GLMM

Generalised Additive Models (GAM) are very similar to generalised linear
models, but they also allow for including non-linear terms in the linear pre-
dictor term (Hastie and Tibshirani, 1990; Wood, 2006). It is worth noting
that the formula argument to linear, generalised linear, spatial, and many
other models may contain polynomial and spline terms if desired, but these
need to be configured manually. Different types of non-linear functions are
available, and may be chosen in the s() function in the formula. Here, an
isotropic thin plate regression spline is used effectively as a semi-parametric
trend surface to add smooth spatial structure from the residuals to the fit, as
in Chap. 7 (p. 180).

> library(mgcv)

This is mgcv 1.3-29

> nyGAM1 <- gam(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

+ s(x, y), weights = POP8, data = NY8)

> anova(nylmw, nyGAM1, test = "Chisq")

Analysis of Variance Table

Model 1: Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME

Model 2: Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME + s(x, y)

Res.Df RSS Df Sum of Sq P(>|Chi|)

1 277.00 310778

2 273.19 305229 3.81 5550 0.27

This does not add much to what we already knew from the weighted linear
model, with the differences in the residual degrees of freedom showing that
the thin plate regression spline term only takes 3.810 estimated degrees of
freedom. This does not, however, exploit the real strengths of the technique.
Because it can fit generalised models, we can step back from using the trans-
formed incidence proportions to use the case counts (admittedly not integer
because of the sharing-out of cases with unknown tract within blocks), offset
by the logarithm of tract populations. Recall that we have said that distribu-
tional assumptions about the response variable matter – our response variable
perhaps ought to be treated as discrete, so methods respecting this may be
more appropriate.

Using the Poisson Generalised Linear Model (GLM) fitting approach, we
fit first with glm; the Poisson model is introduced in Chap. 11. We can already
see that this GLM approach yields interesting insights and that the effects of
TCE exposure on the numbers of cases are significant.

> nyGLMp <- glm(Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

+ offset(log(POP8)), data = NY8, family = "poisson")

> summary(nyGLMp)

298 10 Modelling Areal Data

Call:

glm(formula = Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

offset(log(POP8)), family = "poisson", data = NY8)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.678 -1.057 -0.198 0.633 3.266

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.1344 0.1826 -44.54 < 2e-16 ***

PEXPOSURE 0.1489 0.0312 4.77 1.8e-06 ***

PCTAGE65P 3.9982 0.5978 6.69 2.3e-11 ***

PCTOWNHOME -0.3571 0.1903 -1.88 0.06 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 428.25 on 280 degrees of freedom

Residual deviance: 353.35 on 277 degrees of freedom

AIC: Inf

Number of Fisher Scoring iterations: 5

The use of the Moran’s I test for regression residuals is speculative and
provisional. Based on Lin and Zhang (2007), it takes the deviance residuals
and the linear part of the GLM and provides an indication that the Poisson
regression, like the weighted linear regression, does not have strong residual
spatial autocorrelation (see Fig. 10.5). Much more work remains to be done,
perhaps based on Jacqmin-Gadda et al. (1997), to reach a satisfactory spatial
autocorrelation test for the residuals of GLM.

> NY8$lmpresid <- residuals(nyGLMp, type = "deviance")

> lm.morantest(nyGLMp, listw = NYlistwW)

Global Moran's I for regression residuals

data:

model: glm(formula = Cases ~ PEXPOSURE + PCTAGE65P +

PCTOWNHOME + offset(log(POP8)), family = "poisson", data =

NY8)

weights: NYlistwW

Moran I statistic standard deviate = 0.7681, p-value = 0.2212

alternative hypothesis: greater

sample estimates:

Observed Moran's I Expectation Variance

0.024654 -0.004487 0.001439

10.5 Other Methods 299

Fig. 10.5. Residuals from the Poisson regression model; TCE site locations shown
for comparative purposes

With the GLM to start from, we again add an isotropic thin plate regres-
sion spline in gam. There is little over-dispersion present – fitting with fam-

ily=quasipoisson, in which the dispersion parameter is not fixed at unity, so
they can model over-dispersion that does not result in large changes. Model
comparison shows that the presence of the spline term is now significant.
While the coefficient values of the Poisson family fits are not directly compa-
rable with the linear fits on the transformed incidence proportions, we can see
that exposure to TCE sites is clearly more significant.

> nyGAMp <- gam(Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

+ offset(log(POP8)) + s(x, y), data = NY8, family = "poisson")

> summary(nyGAMp)

Family: poisson

Link function: log

300 10 Modelling Areal Data

Formula:

Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME + offset(log(POP8)) +

s(x, y)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.1366 0.2070 -39.31 < 2e-16 ***

PEXPOSURE 0.1681 0.0558 3.01 0.0026 **

PCTAGE65P 3.7199 0.6312 5.89 3.8e-09 ***

PCTOWNHOME -0.3602 0.1951 -1.85 0.0649 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

edf Est.rank Chi.sq p-value

s(x,y) 7.71 16 24 0.089 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.394 Deviance explained = 21.4%

UBRE score = 0.2815 Scale est. = 1 n = 281

> anova(nyGLMp, nyGAMp, test = "Chisq")

Analysis of Deviance Table

Model 1: Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

offset(log(POP8))

Model 2: Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

offset(log(POP8)) + s(x, y)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 277.00 353

2 269.29 337 7.71 17 0.029

Generalised Estimating Equations (GEE) are an alternative to the esti-
mation of GLMs when we have correlated data. They are often used in the
analysis of longitudinal data, when we have several observations for the same
subject. In a spatial setting, the correlation arises between neighbouring areas.
The treatment in Dormann et al. (2007) is promising for the restricted case
of clusters of grid cells, but has not yet been extended to irregular point or
polygon support.

Generalised linear mixed-effect models (GLMM) extend GLMs by allowing
the incorporation of mixed effects into the linear predictor; see Waller and
Gotway (2004, pp. 387–392) and Schabenberger and Gotway (2005, pp. 359–
369). These random effects can account for correlation between observations.
Here we use glmmPQL from MASS, described in Venables and Ripley (2002,
pp. 292–298), and a Gaussian spatial correlation structure as above when
applying linear mixed-effect models. The glmmPQL function calls lme internally,

10.5 Other Methods 301

so we can use the values of the random and correlation arguments used above
on p. 288. Dormann et al. (2007) suggest the use of a single group, because
the spatial correlation structure is applied group-wise,3 but admit that this is
an ‘abuse’ of the procedure.

> library(MASS)

> attach(as(NY8, "data.frame"))

> nyGLMMp <- glmmPQL(Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

+ offset(log(POP8)), data = NY8, family = poisson,

+ random = ~1 | AREAKEY, correlation = scor)

> detach("as(NY8, \"data.frame\")")

> summary(nyGLMMp)

Linear mixed-effects model fit by maximum likelihood

Data: NY8

AIC BIC logLik

NA NA NA

Random effects:

Formula: ~1 | AREAKEY

(Intercept) Residual

StdDev: 7.325e-05 1.121

Correlation Structure: Gaussian spatial correlation

Formula: ~x + y | AREAKEY

Parameter estimate(s):

range

0.0005343

Variance function:

Structure: fixed weights

Formula: ~invwt

Fixed effects: Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

offset(log(POP8))

Value Std.Error DF t-value p-value

(Intercept) -8.134 0.2062 277 -39.45 0.0000

PEXPOSURE 0.149 0.0352 277 4.23 0.0000

PCTAGE65P 3.998 0.6750 277 5.92 0.0000

PCTOWNHOME -0.357 0.2148 277 -1.66 0.0976

Correlation:

(Intr) PEXPOS PCTAGE

PEXPOSURE -0.472

PCTAGE65P -0.634 0.030

PCTOWNHOME -0.768 0.134 0.230

3 They report that results from PROC GLIMMIX in SAS can be reproduced using
only a single group.

302 10 Modelling Areal Data

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.7839 -0.7476 -0.1731 0.6003 3.8928

Number of Observations: 281

Number of Groups: 281

The fitting functions require that the Spatial*DataFrame object be coerced
to a data.frame object, and attach be used to make the variables visible in the
global environment in this case. The outcome is very close to the GAM results,
and again we find that closeness to the TCE sites is a significant covariate;
again, the percentage owning their own homes is not significant. Since it is
fitted by penalised quasi-likelihood, no log likelihood value is available, and
the summary reports NA for AIC, BIC, and log likelihood.

10.5.2 Moran Eigenvectors

In the previous chapter, we touched on the use of eigenvalues in the Saddle-
point approximation and exact tests for Moran’s I. The Moran eigenvector
approach (Dray et al., 2006; Griffith and Peres-Neto, 2006) involved the spatial
patterns represented by maps of eigenvectors; by choosing suitable orthogonal
patterns and adding them to a linear or generalised linear model, the spatial
dependence present in the residuals can be moved into the model.

It uses brute force to search the set of eigenvectors of the matrix MWM,
where

M = I − X(XTX)−1XT

is a symmetric and idempotent projection matrix and W are the spatial
weights. In the spatial lag form of SpatialFiltering and in the GLM ME form
below, X is an n-vector of ones, that is the intercept only.

In its general form, SpatialFiltering chooses the subset of the n eigenvec-
tors that reduce the residual spatial autocorrelation in the error of the model
with covariates. The lag form adds the covariates in assessment of which eigen-
vectors to choose, but does not use them in constructing the eigenvectors.
SpatialFiltering was implemented and contributed by Yongwan Chun and
Michael Tiefelsdorf, and is presented in Tiefelsdorf and Griffith (2007); ME is
based on Matlab code by Pedro Peres-Neto and is discussed in Dray et al.
(2006) and Griffith and Peres-Neto (2006).

> nySFE <- SpatialFiltering(Z ~ PEXPOSURE + PCTAGE65P +

+ PCTOWNHOME, data = NY8, nb = NY_nb, style = "W",

+ verbose = FALSE)

> nylmSFE <- lm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

+ fitted(nySFE), data = NY8)

> summary(nylmSFE)

10.5 Other Methods 303

Call:

lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME + fitted(nySFE),

data = NY8)

Residuals:

Min 1Q Median 3Q Max

-1.5184 -0.3523 -0.0105 0.3221 3.1964

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5173 0.1461 -3.54 0.00047 ***

PEXPOSURE 0.0488 0.0323 1.51 0.13172

PCTAGE65P 3.9509 0.5578 7.08 1.2e-11 ***

PCTOWNHOME -0.5600 0.1569 -3.57 0.00042 ***

fitted(nySFE)vec13 -2.0940 0.6053 -3.46 0.00063 ***

fitted(nySFE)vec44 -2.2400 0.6053 -3.70 0.00026 ***

fitted(nySFE)vec6 1.0298 0.6053 1.70 0.09007 .

fitted(nySFE)vec38 1.2928 0.6053 2.14 0.03361 *

fitted(nySFE)vec20 1.1006 0.6053 1.82 0.07015 .

fitted(nySFE)vec14 -1.0511 0.6053 -1.74 0.08366 .

fitted(nySFE)vec75 1.9060 0.6053 3.15 0.00183 **

fitted(nySFE)vec21 -1.0633 0.6053 -1.76 0.08014 .

fitted(nySFE)vec36 -1.1786 0.6053 -1.95 0.05258 .

fitted(nySFE)vec61 -1.0858 0.6053 -1.79 0.07399 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.605 on 267 degrees of freedom

Multiple R-squared: 0.34, Adjusted R-squared: 0.308

F-statistic: 10.6 on 13 and 267 DF, p-value: <2e-16

> anova(nylm, nylmSFE)

Analysis of Variance Table

Model 1: Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME

Model 2: Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME + fitted(nySFE)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 277 119.6

2 267 97.8 10 21.8 5.94 4e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Since the SpatialFiltering approach does not allow weights to be used, we
see that the residual autocorrelation of the original linear model is absorbed,
or ‘whitened’ by the inclusion of selected eigenvectors in the model, but that
the covariate coefficients change little. The addition of these eigenvectors –
each representing an independent spatial pattern – relieves the residual au-
tocorrelation, but otherwise makes few changes in the substantive coefficient
values.

304 10 Modelling Areal Data

The ME function also searches for eigenvectors from the spatial lag variant of
the underlying model, but in a GLM framework. The criterion is a permutation
bootstrap test on Moran’s I for regression residuals, and in this case, because
of the very limited remaining spatial autocorrelation, is set at α = 0.5. Even
with this very generous stopping rule, only two eigenvectors are chosen; their
combined contribution just improves only the fit of the GLM model.

> nyME <- ME(Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, offset = log(POP8), family = "poisson",

+ listw = NYlistwW, alpha = 0.5)

> nyME

Eigenvector ZI pr(ZI)

0 NA NA 0.26

1 24 NA 0.47

2 223 NA 0.52

> nyglmME <- glm(Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

+ offset(log(POP8)) + fitted(nyME), data = NY8, family = "poisson")

> summary(nyglmME)

Call:

glm(formula = Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

offset(log(POP8)) + fitted(nyME), family = "poisson", data = NY8)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.569 -1.068 -0.212 0.610 3.166

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.1269 0.1834 -44.30 < 2e-16 ***

PEXPOSURE 0.1423 0.0314 4.53 5.8e-06 ***

PCTAGE65P 4.1105 0.5995 6.86 7.1e-12 ***

PCTOWNHOME -0.3827 0.1924 -1.99 0.047 *

fitted(nyME)vec24 1.5266 0.7226 2.11 0.035 *

fitted(nyME)vec223 0.8142 0.7001 1.16 0.245

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 428.25 on 280 degrees of freedom

Residual deviance: 347.34 on 275 degrees of freedom

AIC: Inf

Number of Fisher Scoring iterations: 5

> anova(nyGLMp, nyglmME, test = "Chisq")

10.5 Other Methods 305

eigen_24 eigen_223

−0.2

−0.1

0.0

0.1

0.2

Fig. 10.6. Maps of the two eigenvalues selected for inclusion in the Poisson regres-
sion model

Analysis of Deviance Table

Model 1: Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

offset(log(POP8))

Model 2: Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

offset(log(POP8)) + fitted(nyME)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 277 353

2 275 347 2 6 0.05

Figure 10.6 shows the spatial patterns chosen to match the very small
amount of spatial autocorrelation remaining in the model. As with the other
Poisson regressions, the closeness to TCE sites is highly significant. Since,
however, many TCE sites are also in or close to more densely populated urban
areas with the possible presence of both point-source and non-point-source
pollution, it would be premature to take such results simply at their face
value. There is, however, a potentially useful contrast between the cities of
Binghampton in the south of the study area with several sites in its vicinity,
and Syracuse in the north without TCE sites in this data set.

10.5.3 Geographically Weighted Regression

Geographically weighted regression (GWR) is an exploratory technique mainly
intended to indicate where non-stationarity is taking place on the map, that
is where locally weighted regression coefficients move away from their global
values. Its basis is the concern that the fitted coefficient values of a global
model, fitted to all the data, may not represent detailed local variations in the

306 10 Modelling Areal Data

data adequately – in this it follows other local regression implementations. It
differs, however, in not looking for local variation in ‘data’ space, but by mov-
ing a weighted window over the data, estimating one set of coefficient values
at every chosen ‘fit’ point. The fit points are very often the points at which
observations were made, but do not have to be. If the local coefficients vary
in space, it can be taken as an indication of non-stationarity.

The technique is fully described by Fotheringham et al. (2002) and involves
first selecting a bandwidth for an isotropic spatial weights kernel, typically
a Gaussian kernel with a fixed bandwidth chosen by leave-one-out cross-
validation. Choice of the bandwidth can be very demanding, as n regressions
must be fitted at each step. Alternative techniques are available, for example
for adaptive bandwidths, but they may often be even more compute-intensive.
GWR is discussed by Schabenberger and Gotway (2005, pp. 316–317) and
Waller and Gotway (2004, p. 434), and presented with examples by Lloyd
(2007, pp. 79–86).

> library(spgwr)

> bwG <- gwr.sel(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

+ data = NY8, gweight = gwr.Gauss, verbose = FALSE)

> gwrG <- gwr(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

+ bandwidth = bwG, gweight = gwr.Gauss, hatmatrix = TRUE)

> gwrG

Call:

gwr(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

bandwidth = bwG, gweight = gwr.Gauss, hatmatrix = TRUE)

Kernel function: gwr.Gauss

Fixed bandwidth: 179943

Summary of GWR coefficient estimates:

Min. 1st Qu. Median 3rd Qu. Max. Global

X.Intercept. -0.5220 -0.5210 -0.5200 -0.5140 -0.5110 -0.52

PEXPOSURE 0.0472 0.0480 0.0495 0.0497 0.0505 0.05

PCTAGE65P 3.9100 3.9300 3.9600 3.9600 3.9800 3.95

PCTOWNHOME -0.5590 -0.5580 -0.5580 -0.5550 -0.5550 -0.56

Number of data points: 281

Effective number of parameters: 4.4

Effective degrees of freedom: 276.6

Sigma squared (ML): 0.4255

AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 568

AIC (GWR p. 96, eq. 4.22): 561.6

Residual sum of squares: 119.6

Once the bandwidth has been found, or chosen by hand, the gwr function
may be used to fit the model with the chosen local kernel and bandwidth. If
the data argument is passed a SpatialPolygonsDataFrame or a SpatialPoints-

DataFrame object, the output object will contain a component, which is an
object of the same geometry populated with the local coefficient estimates.

10.5 Other Methods 307

If the input objects have polygon support, the centroids of the spatial enti-
ties are taken as the basis for analysis. The function also takes a fit.points

argument, which permits local coefficients to be created by geographically
weighted regression for other support than the data points.

The basic GWR results are uninteresting for this data set, with very little
local variation in coefficient values; the bandwidth is almost 180 km. Neither
gwr nor gwr.sel yet take a weights argument, as it is unclear how non-spatial
and geographical weights should be combined. A further issue that has arisen
is that it seems that local collinearity can be induced, or at least observed, in
GWR applications. A discussion of the issues raised is given by Wheeler and
Tiefelsdorf (2005).

As Fotheringham et al. (2002) describe, GWR can also be applied in a
GLM framework, and a provisional implementation permitting this has been
added to the spgwr package providing both cross-validation bandwidth selec-
tion and geographically weighted fitting of GLM models.

> gbwG <- ggwr.sel(Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

+ offset(log(POP8)), data = NY8, family = "poisson",

+ gweight = gwr.Gauss, verbose = FALSE)

> ggwrG <- ggwr(Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

+ offset(log(POP8)), data = NY8, family = "poisson",

+ bandwidth = gbwG, gweight = gwr.Gauss)

> ggwrG

Call:

ggwr(formula = Cases ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME +

offset(log(POP8)), data = NY8, bandwidth = gbwG, gweight =

gwr.Gauss, family = "poisson")

Kernel function: gwr.Gauss

Fixed bandwidth: 179943

Summary of GWR coefficient estimates:

Min. 1st Qu. Median 3rd Qu. Max. Global

X.Intercept. -8.140 -8.140 -8.140 -8.130 -8.130 -8.13

PEXPOSURE 0.147 0.148 0.149 0.149 0.150 0.15

PCTAGE65P 3.980 3.980 3.980 4.010 4.020 4.00

PCTOWNHOME -0.357 -0.355 -0.355 -0.349 -0.346 -0.36

The local coefficient variation seen in this fit is not large either, although from
Fig. 10.7 it appears that slightly larger local coefficients for the closeness to
TCE site covariate are found farther away from TCE sites than close to them.
If, on the other hand, we consider this indication in the light of Fig. 10.8, it is
clear that the forcing artefacts found by Wheeler and Tiefelsdorf (2005) in a
different data set are replicated here.

Further ways of using R for applying different methods for modelling areal
data are presented in Chap. 11. It is important to remember that the avail-
ability of implementations of methods does not mean that any of them are

308 10 Modelling Areal Data

Fig. 10.7. GWR local coefficient estimates for the exposure to TCE site covariate

Fig. 10.8. Pairs plots of GWR local coefficient estimates showing the effects of
GWR collinearity forcing

10.5 Other Methods 309

‘best practice’ as such. It is the analyst who has responsibility for choices of
methods and implementations in relation to situation-specific requirements
and available data. What the availability of a range of methods in R does
make possible is that the analyst has choice and has tools for ensuring that
the research outcomes are fully reproducible.

11

Disease Mapping

Spatial statistics have been widely applied in epidemiology for the study of
the distribution of disease. As we have already shown in Chap. 7, displaying
the spatial variation of the incidence of a disease can help us to detect areas
where the disease is particularly prevalent, which may lead to the detection of
previously unknown risk factors. As a result of the growing interest, Spatial
Epidemiology (Elliott et al., 2000) has been established as a new multidisci-
plinary area of research in recent years.

The importance of this field has been reflected in the appearance of dif-
ferent books and special issues in some scientific journals. To mention a few,
recent reviews on the subject can be found in Waller and Gotway (2004),
while the special issues of the journal Statistical Methods in Medical Research
(Lawson, A., 2005) and Statistics in Medicine (Lawson et al., 2006) also sum-
marise novel developments in disease mapping and the detection of clusters of
disease. Walter and Birnie (1991) compared many different atlases of disease
and they compile the main issues to pay attention to when reporting disease
maps. Banerjee et al. (2004, pp. 88–97, 158–174) also tackle the problem of
disease mapping and develop examples that can be reproduced using S-PLUS™
SpatialStats (Kaluzny et al., 1998) and WinBUGS. In addition, some data sets
and code with examples are available from the book website.1 Haining (2003)
considers different issues in disease mapping, including a Bayesian approach
as well and provides examples, data, and code to reproduce the examples in
the book. Schabenberger and Gotway (2005, pp. 394–399) briefly describe the
smoothing of disease rates. Finally, Lawson et al. (2003) provide a practical
approach to disease mapping, with a number of examples (with full data sets
and WinBUGS code) that the reader should be able to reproduce after reading
this chapter.

In this chapter we refer to the analysis of data which have been previ-
ously aggregated according to a set of administrative areas. The analysis of
data available at individual level requires different techniques, which have

1 http://www.biostat.umn.edu/~brad/data2.html

312 11 Disease Mapping

been described in Chap. 7. These kinds of aggregated data are continuously
collected by Health Authorities and usually cover mortality and morbidity
counts. Special registers have also been set up in several countries to record
the incidence of selected diseases, such as cancer or congenital malformations.
Spatial Epidemiology often requires the integration of large amounts of data,
statistical methods, and geographic information. R offers a unique environ-
ment for the development of these types of analysis given its good connectivity
to databases and the different statistical methods implemented.

Therefore, the aim of this chapter is not to provide a detailed and com-
prehensive description of all the methods currently employed in Spatial Epi-
demiology, but to show those which are widely used. A description as to how
they can be computed with R and how to display the results will be provided.
From this description, it will be straightforward for the user to adapt the
code provided in this chapter to make use of other methods. Other analysis of
health data, as well as contents on which this chapter is built, can be found
in Chaps. 9 and 10.

The North Carolina SIDS data, which have already been displayed in
Chap. 3 (Fig. 3.6), will be used throughout this chapter in the examples that
accompany the statistical methodology described here. The SIDS data set
records the number of sudden infant deaths in North Carolina for 1974–
1978 and 1979–1984 and some other additional information. It is available
as nc.sids in package spdep and further information is available in the asso-
ciated manual page. Cressie and Read (1985) and Cressie and Chan (1989),
for example, provide a description of the data and study whether there is any
clustered pattern of the cases.

11.1 Introduction

The aim of disease mapping is to provide a representation of the spatial distrib-
ution of the risk of a disease in the study area, which we assume is divided into
several non-overlapping smaller regions. The risk may reflect actual deaths due
to the disease (mortality) or, if it is not fatal, the number of people who suffer
from the disease (morbidity) in a certain period of time for the population at
risk.

Hence, basic data must include the population at risk and the number of
cases in each area. These data are usually split according to different variables
in a number of groups or strata, which can be defined using sex, age, and
other important variables. When available, a deprivation index (Carstairs,
2000) is usually employed in the creation of the strata. By considering data in
different groups, the importance of each variable can be explored and potential
confounding factors can be removed (Elliott and Wakefield, 2000) before doing
any other analysis of the data. For example, if the age is divided into 13 groups
and sex is also considered, this will lead to 26 strata in the population. Note
that depending on the type of study the population at risk may be a reduced

11.1 Introduction 313

subset of the total population. For example, in our examples, it is reduced to
the number of children born during the period of study.

Following this structure, we denote by Pij and Oij the population and
observed number of cases in region i and stratum j. Summing over all strata
j we can get the total population and number of cases per area, which we
denote by Pi and Oi. Summing again over all the regions will give the totals,
which will be denoted by P+ and O+.

Representing the observed number of cases alone gives no information
about the risk of the disease given that the cases are mainly distributed ac-
cording to the underlying population. To obtain an estimate of the risk, the
observed number of cases must be compared to an expected number of cases.

If Pi and Oi are already available, which is the simplest case, the expected
number of cases in region i can be calculated as Ei = Pir+, where r+ is
the overall incidence ratio equal to O+

P+
. This is an example of the use of

indirect standardisation (Waller and Gotway, 2004, pp. 12–15) to compute
the expected number of cases for each area.

When data are grouped in strata, a similar procedure can be employed to
take into account the distribution of the cases and population in the different
strata. Instead of computing a global ratio O+

P+
for all regions, a different ratio is

computed for each stratum as rj =
∑

i Oij∑
i Pij

. In other words, we could compute
the ratio between the sum of all cases at stratum j over the population at
stratum j. In this situation, the expected number of cases in region i is given
by Ei =

∑
j Pijrj .

This standardisation is also called internal standardisation because we have
used the same data to compute reference rates rj . Sometimes they are known
because another reference population has been used. For example, national
data can be used to compute the reference rates to be used later in regional
studies.

The following code, based on that available in the nc.sids manual page,
will read the SIDS data, boundaries of North Carolina, and the adjacency
structure of the North Carolina counties (as in Cressie and Read, 1985) in
GAL format (see Chap. 9). By using the argument region.id we make sure
that the order of the list of neighbours ncCR85 is the same as the areas in the
SpatialPolygonDataFrame nc.

> library(maptools)

> library(spdep)

> nc_file <- system.file("shapes/sids.shp", package = "maptools")[1]

> llCRS <- CRS("+proj=longlat +datum=NAD27")

> nc <- readShapePoly(nc_file, ID = "FIPSNO", proj4string = llCRS)

> rn <- sapply(slot(nc, "polygons"), function(x) slot(x,

+ "ID"))

> gal_file <- system.file("etc/weights/ncCR85.gal",

+ package = "spdep")[1]

> ncCR85 <- read.gal(gal_file, region.id = rn)

314 11 Disease Mapping

11.2 Statistical Models

A common statistical assumption to model the number of observed number of
cases in region i and stratum j is that it is drawn from a Poisson distribution
with mean θiEij . Thus, a relative risk of 1 means that the risk is as the average
in the reference region (from where the rates rj are obtained) and it will be
of interest in the location of the regions where the relative risk is significantly
higher than 1. This basic model is described in Banerjee et al. (2004, pp.
158–159), Haining (2003, pp. 194–199), and Lawson et al. (2003, pp. 2–8).

Note that implicitly we are assuming that there is no interaction between
the risk and the population strata, i.e. the relative risk θi depends only on the
region.

At this point, a basic estimate of the risk in a given region can be computed
as SMRi = Oi/Ei, which is known as the Standardised Mortality Ratio. This
is why the data involving the cases are often referred to as the numerator
and the data of the population as the denominator, because they are used
to compute a ratio that estimates the relative risk. Figure 11.1 shows the
SMRs of the SIDS data for the period 1974–1978. Waller and Gotway (2004,
pp. 11–18) describe in detail this and other types of standardisation, together
with other risk ratios frequently used in practise.

> nc$Observed <- nc$SID74

> nc$Population <- nc$BIR74

> r <- sum(nc$Observed)/sum(nc$Population)

> nc$Expected <- nc$Population * r

> nc$SMR <- nc$Observed/nc$Expected

Using the fact that Oi is Poisson distributed, we can obtain a confidence
interval for each SMR (using function pois.exact from package epitools).
Figure 11.2 displays the 95% confidence interval of the SMR computed for

84°W 82°W 80°W 78°W 76°W

34
°N

35
°N

36
°N

37
°N

[0,0.53]
(0.53,0.916]
(0.916,1.58]
(1.58,2.74]
(2.74,4.73]

Fig. 11.1. Standardised mortality ratio of the North Carolina SIDS data in the
period 1974–1978

11.2 Statistical Models 315

0
2

4
6

8

Confidence intervals of the SMR

County

R
el

at
iv

e
R

is
k

A
ns

on

C
ol

um
bu

s

H
al

ifa
x N
or

th
am

pt
on

R
ob

es
on

R
oc

ki
ng

ha
m

R
ut

he
rf

or
d

Fig. 11.2. Confidence intervals of the SMR obtained with an exact formula. The
black dot represents the SMR of each area. The confidence intervals shown by dashed
lines are significantly higher than 1

each area. Highly significant risks (i.e. those whose confidence interval is above
one) have been drawn using a dashed line and the name of the county has
been added as a label. Anson county, which has been pointed out as a clear
extreme value in previous studies (Cressie and Chan, 1989), is the one with
the highest confidence interval.

11.2.1 Poisson-Gamma Model

Unfortunately, using a Poisson distribution implies further assumptions that
may not always hold. One key issue is that for this distribution the mean
and the variance of Oi are supposed to be the same. It is often the case that
data are ‘over-dispersed’, so that the variance of the data is higher than their
mean and the statistical model needs to be expanded. A simple way to allow
for a higher variance is to use a negative binomial distribution instead of the
Poisson.

The negative binomial distribution can also be regarded as a mixed model
in which a random effect following a Gamma distribution for each region is
considered. This formulation is known as the Poisson-Gamma (PG) model,
because it can be structured as the following two-level model:

Oi|θi, Ei ∼ Po(θiEi),
θi ∼ Ga(ν, α).

In this model, we also consider the relative risk θi as a random variable,
which is drawn from a Gamma distribution with mean ν/α and variance ν/α2.
Note that now the distribution of Oi is conditioned on the value of θi. The
unconditioned distribution for each Oi is easy to derive and it is a negative
binomial with size parameter ν and probability α

α+Ei
.

In addition, the posterior distribution of θi, i.e. its distribution given the
observed data {Oi}n

i=1, can also be derived and it is a Gamma with parameters

316 11 Disease Mapping

ν +Oi and α+Ei. In other words, the information provided by observing the
data has updated our prior knowledge or assumptions on θi. The posterior
expectation of θi is

E[θi|Oi, Ei] =
ν + Oi

α + Ei
,

which can also be expressed as a compromise between the prior mean of the
relative risks and SMRi, so that this is a shrinkage estimator:

E[θi|Oi, Ei] =
Ei

α + Ei
SMRi + (1 − Ei

α + Ei
)
ν

α
.

Two issues should be noted from this estimator. First of all, when Ei is
small, as often happens in low populated areas, a small variation in Oi can
produce dramatic changes in the value of SMRi. For this reason, according to
the previous expectation, the SMRi will have a low weight, as compared to
that of the prior mean. Secondly, information is borrowed from all the areas in
order to construct the posterior estimates given that ν and α are the same for
every region. This concept of borrowing strength can be modified and extended
to take into account a different set of areas or neighbours.

> library(DCluster)

> eb <- empbaysmooth(nc$Observed, nc$Expected)

> nc$EBPG <- eb$smthrr

Given that ν and α are unknown, we need a procedure to estimate them.
They can be easily estimated from the data using the method of moments,
following formulae given by Clayton and Kaldor (1987) to produce Empirical
Bayes (EB) estimates, implemented in package DCluster. In this example,
the values are ν = 4.6307 and α = 4.3956, which gives a prior mean of the
relative risks of 1.0535 (very close to 1).

Probability maps (Choynowski, 1959) are a convenient way of representing
the significance of the observed values. These maps show the probability of
a value being higher than the observed data according to the assumption we
have made about the model. In other words, probability maps show the p-
value of the observed number of cases under the current model. Figure 11.3
represents the probability maps for the Poisson and Poisson-Gamma models.
The reason to compare both maps is to show how significance varies with the
model. We noted that the Poisson-Gamma model was more appropriate in
this case due to over-dispersion, and we should try to make inference based
on this model. As expected, the p-values for the Poisson-Gamma model are
higher because more variability is permitted. Nevertheless, there are still two
zones of high risk to the northeast and south.

11.2.2 Log-Normal Model

Clayton and Kaldor (1987) proposed another risk estimator based on assum-
tion that the logarithm of the relative risks (βi = log(θi)) follows a multivariate

11.2 Statistical Models 317

pvalpois

pvalnegbin

0

0.01

0.05

0.1

0.5

1

Fig. 11.3. Probability maps for the Poisson and negative binomial models

normal distribution with common mean φ and variance σ2. In this case, the es-
timate of the log-relative risk is not taken as log(Oi/Ei) but log((Oi+1/2)/Ei),
because the former is not defined if Oi is zero. The EM algorithm is used to
obtain estimates of the mean and variance of the model, which can be plugged
in to the following Empirical Bayes estimator of βi:

β̂i = bi =
φ̂ + (Oi + 1

2)σ̂2 log[(Oi + 1
2)/Ei] − σ̂2/2

1 + (Oi + 1
2)σ̂2

,

where φ̂ and σ̂2 are the estimates of the prior mean and variance, respectively.
These are given by

φ̂ =
1
n

n∑
i=1

bi = b

and

σ̂2 =
1
n

{
σ̂2

n∑
i=1

[1 + σ̂2(Oi + 1/2)]−1 +
n∑

i=1

(bi − φ̂)2
}

.

Estimates bi are updated successively using previous formulae until con-
vergence. Hence, the estimator for θi is θ̂i = exp{β̂i}. Note that now the way
information is borrowed is to estimate the common parameters φ and σ2, and
that the resulting estimates are a combination of the local estimate of the log
relative risk and φ. Unfortunately, the current estimator is more complex than
the previous one and it cannot be reduced to a shrinkage expression.

> ebln <- lognormalEB(nc$Observed, nc$Expected)

> nc$EBLN <- exp(ebln$smthrr)

318 11 Disease Mapping

11.2.3 Marshall’s Global EB Estimator

Marshall (1991) developed a new EB estimator assuming that the relative
risks θi have a common prior mean µ and variance σ2, but without specifying
any distribution. By using the method of moments, he is able to work a new
estimator out employing a shrinkage estimator as follows:

θ̂i = µ̂ + Ci(SMRi − µ̂) = (1 − Ci)µ̂ + CiSMRi,

where

µ̂ =
∑n

i=1 Oi∑n
i=1 Ei

and

Ci =
s2 − µ̂/E

s2 − µ̂/E + µ̂/Ei

.

E stands for the mean of the Ei’s and s2 is the usual unbiased estimate of the
variance of the SMRi’s. Unfortunately, this estimator can produce negative
estimates of the relative risks when s2 < µ̂/E, in which case θ̂i = µ̂ is taken.

The shrinkage of this estimator highly depends (again) on the value of Ei.
If it is high, which means that the SMRi is a reliable estimate, Ci will be
close to 1 and the estimator will give more weight to the SMRi. On the other
hand, if Ei is small, more weight is given to the estimate of the prior mean µ̂
because the SMRi is less reliable and so it borrows more information from
other areas.

> library(spdep)

> EBMarshall <- EBest(nc$Observed, nc$Expected)

> nc$EBMarshall <- EBMarshall[, 2]

Figure 11.4 represents the different estimates obtained by the different
estimators described so far. All EB estimators seem to produce very similar
estimates in all the areas. By comparing those maps to the map that shows
the SMR, it is possible to see how very extreme values (either high or low)
have been shifted towards the global mean. In other words, these values have
been smoothed by taking into account global information in the computation
of the estimate.

To compare the variability of the estimates produced by each method, we
have created a boxplot of each set of values, which appear in Fig. 11.6. From
the plot it is clear that the SMR is the most variable and that the other three
have been shrunk towards the global mean, which is approximately 1. Hence,
we might expect similar results when using any of the EB estimators. As
pointed by Marshall (1991), the estimation procedure based on the Poisson-
Gamma model proposed by Clayton and Kaldor (1987) may not converge in

11.3 Spatially Structured Statistical Models 319

SMR EBPG

EBLN EBMarshall

0.00

0.53

0.92

1.58

2.74

4.73

Fig. 11.4. Comparison of different risk estimators. SMR displays the standard-
ised mortality ratio, whilst EBPG, EBLN, and EBMarshall show different empir-
ical Bayes estimates using the Poisson-Gamma model, the log-normal model, and
Marshall’s global estimator

some circumstances and another estimator should be used. The EB proposed
by Marshall (1991) can also be unfeasible in similar circumstances. Hence, the
EB estimator based on the log-Normal model seems to be the most computa-
tionally stable and reliable.

All these EB estimators produce smoothed estimates of the risk rates bor-
rowing information from the global area but, depending on the size and ex-
tension of the total area under study, it could be more reasonable to consider
only a small set of areas that are close to each other. A common example is to
use only the areas that share a boundary with the current region to compute
its risk estimate. Unfortunately, this procedure involves the use of more com-
plex models that require the use of additional software and will be discussed
in the following sections.

11.3 Spatially Structured Statistical Models

Although borrowing strength globally can make sense in some cases, it is
usually better to consider a reduced set of areas to borrow information from.
A sensible choice is to take only neighbouring areas or areas which are within
a certain distance from the current area.

Marshall (1991) proposed another estimator that requires only local infor-
mation to be computed. For each region, a set of neighbours is defined and
local means, variances, and shrinkage factors are defined in a similar way as
in the global estimator, but considering only the areas in the neighbourhood.
This produces a local shrinkage for each area, instead of the global shrinkage
provided by the previous estimator.

> nc$EBMrshloc <- EBlocal(nc$Observed, nc$Expected, ncCR85)$est

The way this estimator is computed raises a new question about how areas
are related to each other. In the previous models, no account for how areas

320 11 Disease Mapping

were distributed in the study region was considered, so that the influence of
a region did not depend on its location at all. That is, we would obtain the
same estimates if the distribution of the regions were permutated at random.
With the new estimator the exact location of the areas is crucial, and different
locations of the regions will give different estimates as a result. The way regions
are placed in a map can be described by means of its topology, which accounts
for the neighbours of a given region. See Chap. 9 for more details on this and
how to obtain it.

Although neighbours are usually defined as two regions that share a com-
mon boundary, Cressie and Chan (1989) define two regions as neighbours if
the distance between their centroids is within 30 miles. This is not a trivial
issue since different definitions of neighbourhood will produce different results.

The two estimators proposed by Marshall have been displayed in Fig. 11.5.
The version that uses only local information produces smoothed estimates of
the relative risks that are shrunk towards the local mean that turned out to
be less shrunk towards the global mean. In addition, the shrinkage produced
by the local estimator is in general lower than that for the global estimator.

The boxplot presented in Fig. 11.6 compares the different EB estimators
discussed so far. Marshall’s local estimator also shows a general shift towards
the global mean, but it is less severe than for the others because only local
information is employed. In general, EB smoothed estimators have been crit-
icised because they fail to cope with the uncertainty of the parameters of the
model (Bernardinelli and Montomoli, 1992) and to produce an overshrinkage
since the parameters of the prior distributions are estimated from the data

EBMarshall

EBMrshloc

0.00

0.53

0.92

1.58

2.74

4.73

Fig. 11.5. Marshall’s EB estimator using local (top) and global (bottom)
information

11.4 Bayesian Hierarchical Models 321

SMR

EBPG

EBLN

EBMarshall

EBMrshloc

0 1 2 3 4

Fig. 11.6. Comparison of raw and EB estimators of the relative risk

and remain fixed. To solve this problem several constrained EB estimators
have been proposed to force the posterior distribution of the smoothed esti-
mates to resemble that of the raw data (Louis, 1984; Devine and Louis, 1994;
Devine et al., 1994).

Full Bayes methods allow setting the prior distributions for these para-
meters and, hence, permit a greater variability and produce more suitable
smoothed estimates. More standard smoothed risk estimators that borrow in-
formation locally can be developed by resorting to Spatial Autoregressive and
Conditional Autoregressive specifications (Waller and Gotway, 2004). Basi-
cally, these models condition the relative risk in an area to be similar to the
values of the neighbouring areas. More details are given in the next sections
of this chapter and in Chap. 10 for non-Bayesian models.

11.4 Bayesian Hierarchical Models

Bayesian Hierarchical Models make an appropriate framework for the devel-
opment of spatially structured models. The model is specified in different
layers, so that each one accounts for different sources of variation. For exam-
ple, they can cope with covariates at the same time as borrowing strength
from neighbours to improve the quality of estimates. The use of these models
in disease mapping is considered in Haining (2003, pp. 307–311, 367–376),
Waller and Gotway (2004, pp. 409–429), Banerjee et al. (2004, pp. 159–169),
and Schabenberger and Gotway (2005, pp. 394–399). Lawson et al. (2003)
offer a specific volume on the subject, with reproducible examples.

Besag et al. (1991), BYM henceforth, introduced in their seminal paper a
type of models that split the variability in a region as the sum of a spatially
correlated variable (which depends on the values of its neighbours) plus an
area-independent effect (which reflects local heterogeneity). Although direct
estimates of the variables in the model can seldom be obtained when using
Bayesian Hierarchical Models, their posterior distributions can be obtained by
means of Markov Chain Monte Carlo (MCMC) techniques. Basically, MCMC

322 11 Disease Mapping

methods generate simulations of the parameters of the model which, after a
suitable burn-in period, become realisations of their posterior distributions.
An introduction to MCMC and its main applications, including disease map-
ping, can be found in Gilks et al. (1996).

WinBUGS (Spiegelhalter et al., 2003) is software that uses MCMC meth-
ods (in particular, Gibbs Sampling; Gelman et al., 2003) to simulate from the
posterior distributions of the parameters in the model. Starting from a set
of initial values, one sample of each variable is simulated at the time using
the full conditional distribution of the parameter given the other parameters.
After a suitable burn-in period, the simulations generated correspond to the
joint posterior distribution.

Although WinBUGS is the main software package, it was previously known
as BUGS and currently it comes in different flavours. OpenBUGS, for example
is the open source alternative to WinBUGS and it is actually a fork of the
main WinBUGS software. Apart from the advantage of coming with the source
code, OpenBUGS can be called from R using package BRugs. In addition,
some specific plug-ins have been developed for WinBUGS to deal with certain
applications. It is worth mentioning GeoBUGS, which provides a graphical
interface to the management of maps and compute adjacency relationships
within WinBUGS and OpenBUGS, and it can create maps with the results.
Lawson et al. (2003) have described extensively how to do a disease mapping
using Multilevel Models with WinBUGS (and MLwiN), and is a complete
reference for those readers willing to go deeper in this subject.

Another package to use WinBUGS from R is R2WinBUGS (Sturtz et al.,
2005). This package calls WinBUGS using its scripting facilities so that the
resulting log file containing all the results can be loaded into R after the com-
putations have finished. R2WinBUGS will be the package used in this book.
The main reason is that at the time of writing BRugs only works on Win-
dows (although the authors claim that it should also work on Linux with
minor modifications) whilst R2WinBUGS can be used on several platforms
with minor adjustments. Under Linux, for example it can be run using the
Wine programme. Finally, it is worth noting that Gelman and Hill (2007)
provide a good and accessible text on data analysis using Bayesian hierar-
chical models and describe the use of R and WinBUGS via R2WinBUGS in
Chaps. 16 and 17.

11.4.1 The Poisson-Gamma Model Revisited

The following example shows a full Bayesian Poisson-Gamma formulation (i.e.
assigning priors to the parameters ν and α) to produce smoothed estimates of
the relative risks that can be run from R using R2WinBUGS. In this model,
ν and α have been assigned vague gamma priors so that as little prior in-
formation as possible is introduced. The WinBUGS code needed to run the
Poisson-Gamma model is shown in Fig. 11.7.

11.4 Bayesian Hierarchical Models 323

model

{

for(i in 1:N)

{

observed[i]~dpois(mu[i])

mu[i]<-theta[i]*expected[i]

theta[i]~dgamma(nu, alpha)

}

nu~dgamma(.01, .01)

alpha~dgamma(.01, .01)

}

Fig. 11.7. Code of the Poisson-Gamma model for WinBugs

The next chunk of code shows how to convert all the necessary data into
the structure used by WinBUGS. In addition, we need to set up the initial
values for some of the parameters of the model. Data and initial values must
be saved into a separated file.

> library(R2WinBUGS)

> N <- length(nc$Observed)

> d <- list(N = N, observed = nc$Observed, expected = nc$Expected)

> pgmodelfile <- paste(getwd(), "/PG-model.txt", sep = "")

> wdir <- paste(getwd(), "/PG", sep = "")

> if (!file.exists(wdir)) {

+ dir.create(wdir)

+ }

> BugsDir <- "/home/asdar/.wine/dosdevices/c:/Program Files/WinBUGS14"

> MCMCres <- bugs(data = d, inits = list(list(nu = 1, alpha = 1)),

+ working.directory = wdir, parameters.to.save = c("theta",

+ "nu", "alpha"), n.chains = 1, n.iter = 20000,

+ n.burnin = 10000, n.thin = 10, model.file = pgmodelfile,

+ bugs.directory = BugsDir, WINEPATH = "/usr/bin/winepath")

Briefly explained, the bugs function will take data, initial values, model
file, and other information required and it will create a script that will be run
with WinBUGS.2 bugs will create the necessary files (data, initial values, and
script) that will be placed under working.directory. After running the model,
the output will be stored here as well. The WinBUGS script will basically
check the syntax of the model, load the data, and compile the model. The
following step is to read (or generate from the priors) the initial values for
the parameters of the model and 10,000 simulations of the Markov Chain

2 Windows users must modify the paths in working.directory, model.file, and
bugs.directory accordingly, and remove the argument WINEPATH, which is not
needed.

324 11 Disease Mapping

are generated (keeping just 1 every 10). Note that, since we need a burn-in
period, these are not saved. Then, we set that variables ‘nu’, ‘alpha’, and
‘theta’ will be saved and 10,000 more simulations are generated, of which
only 1 of every 10 are saved to avoid autocorrelation and improve mixing
and convergence. Finally, the summary statistics and plots are saved into the
log files under the working directory. Two such files are created: an ODC file
(WinBUGS format) with summary statistics and plots, and an ASCII file with
the summary statistics. In addition, a summary of the output is stored as a
series of lists in MCMCres. The posterior mean and median of the relative risks
can be extracted as follows:

> nc$PGmean <- MCMCres$mean$theta

> nc$PGmedian <- MCMCres$median$theta

Although it will not be described here in detail, it is essential to check
that the Markov Chain has converged so that the values that we are using
have been drawn from the posterior distribution of the parameters. A example
using package coda (Best et al., 1995) is shown later in a more complex model.

As we have obtained samples from the posterior distributions of ν and α, it
is possible to compute pointwise estimates and probability intervals for both
parameters. For the sake of simplicity and to be able to compare the values
obtained with those from the EB approach, the pointwise estimates (posterior
means) of these values were ν̂ = 6.253 and α̂ = 5.967, which are slightly
higher than the ones obtained with the EB estimator. Similar estimates can
be obtained for the relative risks, but note that now they are not based on
single values of ν and α, but that the relative risk estimates are averaged over
different values of those parameters.

Even though point estimates of the relative risks are usually very useful,
for most applications it is better to give a credible interval, for it can be used
to detect areas of significantly high risk, if the interval is over 1. Figure 11.8
summarises the 95% credible intervals for each region. The median has been

0
1

2
3

4

Credible intervals of the relative risks

County

R
el

at
iv

e
R

is
k

A
ns

on

C
ol

um
bu

s

H
al

ifa
x

R
ob

es
on

Fig. 11.8. 95% credible intervals of the relative risks obtained with WinBUGS using
a full Bayes Poisson-Gamma model

11.4 Bayesian Hierarchical Models 325

SMR EBPG

PGmean PGmedian

0.00

0.53

0.92

1.58

2.74

4.73

Fig. 11.9. Comparison of empirical Bayes and full Bayes estimates of the relative
risks using a Poisson-Gamma model

included (black dot), and the areas whose credible intervals are above 1 have
been highlighted using a dashed line and the county name displayed. As we
mentioned before, Anson county is of special interest because it shows the
highest risk.

In Fig. 11.9 we have compared the estimates of the relative risks provided
by the Poisson-Gamma model using both Empirical Bayes and Full Bayes
approaches. Both estimation procedures lead to very similar estimates and
they only differ in a few areas. Note how they all provide smoothed estimates
of the relative risks, as compared to the raw SMRs.

11.4.2 Spatial Models

Additional spatial structure can be included by considering a CAR model
and covariates can be used to explain part of the variability of the relative
risks. Cressie and Chan (1989) considered the proportion of non-white births
as an important factor related to the incidence of SIDS. A full description
of these models can be found in Banerjee et al. (2004, Chap. 5). In general,
these models are far more complex than the Poisson-Gamma described before,
and they should be used with extreme caution because of the high number of
parameters and possible interactions between them.

As described in Sect. 10.2.1, the CAR specification for a set of random
variables {vi}n

i=1 can be written as follows:

vi|v−i ∼ N

⎛
⎝∑

j∼i

wijvj∑
j wij

, σ2
v/

∑
j

wij

⎞
⎠ ,

where wij is a weight that measures the strength of the relationship between
(neighbour) regions i and j and σ2

v indicates the conditional variance of the
CAR specification.

326 11 Disease Mapping

Although the conditional distributions are proper, it is not the case for
the joint distribution. Nevertheless, this CAR specification is often used as a
prior distribution of the spatial random effects and it can lead to a proper
posterior under some constraints (Ghosh et al., 1998).

Given the structure of the CAR specification, it is necessary to know the
neighbours of each region. They can be defined in different ways, depending on
the type of relationship that exists between the areas. In our example, we use
the same neighbourhood structure as in Cressie and Read (1985), which can be
found in package spdep. In addition, it is necessary to assign a weight to each
pair of neighbours, which measure the strength of the interaction. Following
Besag et al. (1991), we set all the weights to 1 if regions are neighbours and
0 otherwise.

The flexibility of the Bayesian Hierarchical Models allows us to perform
an Ecologic Regression (English, 1992) at the same time as we consider inde-
pendent and spatial random effects. By including covariates in our model we
aim to assess and remove the effect of potential confounders or risk factors.
The assessment of the importance of a covariate is indicated by the estimated
value of its coefficient and its associated probability interval. If, for example,
the 95% credible interval does not contain the value 0, we may assume that
the coefficient is significant and, if greater than zero, it will indicate a positive
relationship between the risk and the variable.

The results of an Ecologic Regression can be potentially misleading if we
try to make inference at the individual level, since the effects that operate
at that level may not be the same as those reflected at the area level. In
the extreme case, the effects might even be reversed. A solution to this is
to combine the aggregated data with some individual data from a specific
survey, which can be also used to improve the estimation of the effects of the
covariates (Jackson et al., 2006).

In our example, we have the available number of non-white births in each
county. The variable ethnicity is often used in the United States as a surrogate
of the deprivation index (Krieger et al., 1997). Considering this variable in our
model may help to explain part of the spatial variability of the risk of SIDS. To
account for the ethnicity, we use the proportion of non-white births in the area.
This also allow us to compare the values for different counties. Figure 11.10
shows the spatial variation of the proportion of non-white births. Notice how
there exists a similar pattern to that shown by the spatial distribution of the
SMR and the different EB estimates. Finally, the WinBUGS model used in
this case can be found in Fig. 11.11. We have used the priors suggested in
Best et al. (1999) to allow a better identifiability of the random effects ui

and vi.
The chunk of code shown below converts the neighbours of each county as

specified in Cressie and Read (1985) into the format required by WinBUGS.
Note that these are already available in an R object and that they have been
matched so that the list of neighbours is in the right order. When this is
not the case, proper matching must be done. Function nb2WB can be used to

11.4 Bayesian Hierarchical Models 327

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 11.10. Proportion of non-white births in Carolina, 1974–1978. Notice the sim-
ilar pattern to the relative risk estimates

model

{

for(i in 1:N)

{

observed[i] ~ dpois(mu[i])

log(theta[i]) <- alpha + beta*nonwhite[i] + u[i] + v[i]

mu[i] <- expected[i]*theta[i]

u[i] ~ dnorm(0, precu)

}

v[1:N] ~ car.normal(adj[], weights[], num[], precv)

alpha ~ dflat()

beta ~ dnorm(0,1.0E-5)

precu ~ dgamma(0.001, 0.001)

precv ~ dgamma(0.1, 0.1)

sigmau<-1/precu

sigmav<-1/precv

}

Fig. 11.11. Code of the Besag-York-Mollié model for WinBugs

convert an nb object into a list containing the three elements (adj, weights,
and num) required to use a CAR specification in WinBUGS. Similarly, the
function listw2WB can be used for a listw object. The main difference is that
nb2WB sets all the weights to 1, whilst listw2WB keeps the values of the weights
as in the listw object.

> nc.nb <- nb2WB(ncCR85)

The last step is to compute the proportion of non-white births in each
county and create the R lists with the data and initial values.

> nc$nwprop <- nc$NWBIR74/nc$BIR74

> d <- list(N = N, observed = nc$Observed, expected = nc$Expected,

328 11 Disease Mapping

+ nonwhite = nc$nwprop, adj = nc.nb$adj, weights = nc.nb$weights,

+ num = nc.nb$num)

> dwoutcov <- list(N = N, observed = nc$Observed,

+ expected = nc$Expected, adj = nc.nb$adj, weights = nc.nb$weights,

+ num = nc.nb$num)

> inits <- list(u = rep(0, N), v = rep(0, N), alpha = 0,

+ beta = 0, precu = 0.001, precv = 0.001)

The procedure to run this model is very similar to the previous one. We
only need to change the file names of the model, data, and initial values. Notice
that not all initial values must be provided and that some can be generated
randomly. In this model, we are going to keep the summary statistics for a wide
range of variables. In addition to the relative risks θi, we want to summarise
the values of the intercept (α), the coefficient of the covariate (β), and the
values of the non-spatial (ui) and spatial (vi) random effects.

> bymmodelfile <- paste(getwd(), "/BYM-model.txt", sep = "")

> wdir <- paste(getwd(), "/BYM", sep = "")

> if (!file.exists(wdir)) {

+ dir.create(wdir)

+ }

> BugsDir <- "/home/asdar/.wine/dosdevices/c:/Program Files/WinBUGS14"

> MCMCres <- bugs(data = d, inits = list(inits),

+ working.directory = wdir, parameters.to.save = c("theta",

+ "alpha", "beta", "u", "v", "sigmau", "sigmav"),

+ n.chains = 1, n.iter = 30000, n.burnin = 20000,

+ n.thin = 10, model.file = bymmodelfile, bugs.directory = BugsDir,

+ WINEPATH = "/usr/bin/winepath")

After running the model, the summary statistics are added to the spatial
object that contains all the information about the North Carolina SIDS data
so that it can be displayed easily.

> nc$BYMmean <- MCMCres$mean$theta

> nc$BYMumean <- MCMCres$mean$u

> nc$BYMvmean <- MCMCres$mean$v

Convergence of the Markov Chain must be assessed before attempting any
valid inference from the results. Cowles and Carlin (1996) provide a summary
of several methods and a useful discussion. They state the difficulty to assess
convergence in practise. Some of the criteria discussed in the paper are imple-
mented in package coda. These criteria can be applied to the deviance of the
model to monitor convergence of the joint posterior. Ideally, several chains
(each one starting at a sufficiently different point) can be run in parallel so
that the traces can be compared (Gelman and Rubin, 1992).

WinBUGS can produce the output in the format required by coda. Basi-
cally, it will produce an index file (codaIndex.txt) plus another file with the
values of the variables (coda1.txt) that can be read using function read.coda.

11.4 Bayesian Hierarchical Models 329

2000 2200 2400 2600 2800 3000

38
0

40
0

42
0

44
0

Iterations

Trace of deviance

360 380 400 420 460

0.
00

0

N = 1000 Bandwidth = 2.807

Density of deviance

2000 2200 2400 2600 2800 3000

−
1.

2
−

0.
8

−
0.

4

Iterations

Trace of alpha

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2

0.
0

1.
0

2.
0

N = 1000 Bandwidth = 0.0364

Density of alpha

2000 2200 2400 2600 2800 3000

1.
0

1.
5

2.
0

2.
5

3.
0

Iterations

Trace of beta

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
4

0.
8

N = 1000 Bandwidth = 0.09797

Density of beta

2000 2200 2400 2600 2800 3000

0.
5

1.
5

2.
5

Iterations

Trace of theta[94]

0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
4

0.
8

N = 1000 Bandwidth = 0.1016

Density of theta[94]

0.
03

0
0.

01
5

Fig. 11.12. Plots of the posterior distributions of α, β, and the deviance of the
model

This will create an object of type mcmc, which contains the simulations from
all the variables saved in WinBUGS. Figure 11.12 shows the trace and den-
sity of the posterior distribution of the deviance and the parameters α, β and
the relative risk of Robeson county (area number 94 and cluster centre in
Fig. 11.18).

For a single chain, Geweke’s criterion (Geweke, 1992) can be computed to
assess convergence. It is a score test based on comparing the means of the
first and the last part of the Markov Chain (by default, the 10% initial values
to the 50% last values). If the chain has converged, both means should be
equal. Given that it is a score test, values of the test statistics between −1.96
and 1.96 indicate convergence, whilst more extreme value will denote lack of

330 11 Disease Mapping

convergence. For the selected parameters, it seems that convergence has been
reached:

> geweke.diag(ncoutput[, c("deviance", "alpha", "beta",

+ "theta[94]")])

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

deviance alpha beta theta[94]

0.1216 -0.8550 0.4239 -1.0669

Figure 11.13 shows the SMR and the smoothed estimate of the relative
risks obtained. When the posterior distribution is very skewed, the posterior
median can be a better summary statistic, but it is not the case now.

According to the posterior density of β shown in Fig. 11.12, the coefficient
of the covariate can be considered as significantly positive given that its pos-
terior mean is greater than 0 and its 95% credible interval is likely not to
contain the value 0. This means that there is an actual risk increase in those
regions with a high proportion of non-white births. Point posterior estimates
(mean) of the random effects ui and vi are shown in Figs. 11.14 and 11.15,
respectively. They seem to have a very small variation, specially the former,
but this is not so because they are in the log-scale.

It should be noted that if the spatial pattern is weak or appropriate co-
variates are included in the model, the random effects ui and vi may become
unidentifiable. However, following Besag et al. (1995), valid inference could

SMR

BYMmean

0.00

0.53

0.92

1.58

2.74

4.73

Fig. 11.13. Standardised Mortality Ratio and posterior means of the relative risks
obtained with the BYM model

11.4 Bayesian Hierarchical Models 331

−0.147
−0.03
−0.012
0.003
0.029
0.179

Fig. 11.14. Posterior means of the non-spatial random effects (ui) estimated with
the BYM model

−0.289
−0.104
−0.04
0.021
0.138
0.297

Fig. 11.15. Posterior means of the spatial random effects (vi) estimated with the
BYM model

0
1

2
3

4

Credible intervals of the relative risks

County

R
el

at
iv

e
R

is
k

A
ns

on

B
er

tie

C
ol

um
bu

s

E
dg

ec
om

be

G
re

en
e

H
al

ifa
x

H
er

tfo
rd

H
ok

e N
or

th
am

pt
on

R
ob

es
on

S
co

tla
nd

W
ar

re
n

Fig. 11.16. 95% credible intervals of the relatives risks obtained with the BYM
model

still be done for the relative risks, but care should be taken to avoid having
an improper posterior. For this reason, we can monitor ui + vi to assess that
these values are stable and that they do not have an erratic behaviour that
could have an impact on the posterior estimates of the relative risks and the
coefficients of the covariates.

The credible intervals of the relative risks have been plotted in Fig. 11.16.
The intervals in dashed line show the counties where the relative risk is sig-
nificantly higher than one. All these regions are among the ones that appear
in the two zones of high risk, plus Anson county.

332 11 Disease Mapping

A few words must be said as to how we have selected the intervals and
colours to display the relative risks in the maps. The intervals have been chosen
by taking the cut points equally spaced in the range of the relative risks in
the log scale (N. Best, personal communication). As discussed in Chap. 3, the
colours used to produce the maps can be based on the palettes developed
by Brewer et al. (2003), which are available in package RColorBrewer. The
research was initiated by Brewer et al. (1997) to produce an atlas of disease in
the United States. Brewer and Pickle (2002) study how the variable intervals
and colours affect how maps are perceived, and Olson and Brewer (1997)
developed a useful set of palettes to be used in disease mapping and that are
suitable for colour-blind people.

11.5 Detection of Clusters of Disease

Disease mapping provides a first insight to the spatial distribution of the dis-
ease, but it may be required to locate the presence of zones where the risk
tends to be unusually higher than expected. Besag and Newell (1991) dis-
tinguish between methods for clustering and the assessment of risk around
putative pollution sources. The former tackle the problem of assessing the
presence of clusters, whilst the latter evaluate the risk around a pre-specified
source. A third type of method is related to the location of the clusters them-
selves, which usually involve the examination of small portions of the whole
study area each at a time.

Wakefield et al. (2000) provide a review of some classic methods for the
detection of clusters of disease. Haining (2003, pp. 237–264) summarises a good
number of well-known methods. Waller and Gotway (2004) also cover in detail
most of the methods described in this chapter and many others, providing a
discussion on the statistical performance of the tests (pp. 259–263). Lawson
et al. (2003, Chap. 7) describe the use of Hierarchical Bayesian models for the
analysis of risk around pollution sources.

Someof thesemethodshavebeen implemented inpackageDCluster (Gómez-
Rubio et al., 2005), which uses different models and bootstrap (Davison and
Hinkley, 1997) to compute the significance of the observed values. This can
be done in a general way by resampling the observed number of cases in each
area and re-computing the value of the test statistic for each of the simulated
data sets. Then, a p-value can be computed by ranking the observed value of
the test statistic among the values obtained from the simulations.

Under the usual assumption that Oi is drawn from a Poisson with mean
θiEi and conditioning on the total number of cases, the distribution of
(O1, . . . , On) is Multinomial with probabilities (E1/E+, . . . , En/E+). In ad-
dition to the multinomial model, DCluster offers the possibility of sampling
using a non-parametric bootstrap, or from a Poisson (thus, not conditioning
on O+) or Negative Binomial distribution, to account for over-dispersion in
the data. As discussed below, over-dispersion may affect the p-value of the

11.5 Detection of Clusters of Disease 333

test and when data are highly over-dispersed it may be worth re-running the
test sampling from a Negative Binomial distribution.

11.5.1 Testing the Homogeneity of the Relative Risks

Before conducting any analysis of the presence of clusters, the heterogeneity
of the relative risks must be assessed. In this way, we can test whether there
are actual differences among the different relative risks. The reasons for this
heterogeneity may be related to many different factors, such as the presence
of a pollution source in the area, which may lead to an increase in the risk
around it. Other times the heterogeneity is due to a spatially varying risk
factor, and higher risks are related to a higher exposure to this risk factor.

Given that for each area we have computed its expected and observed
number of cases, a chi-square test can be carried out to test for (global)
significant differences between these two quantities. The statistic is defined by
the following formula:

χ2 =
n∑

i=1

(Oi − θEi)2

θEi
,

where θ is the global SMR =
∑

i Oi/
∑

i Ei and, asymptotically, it follows a
chi-square distribution with n degrees of freedom. If internal standardisation
has been used to obtain Ei, then θ is equal to one and the number of degrees
of freedom are reduced to n− 1 because the additional constraint

∑n
i=1 Oi =∑n

i=1 Ei holds (Wakefield et al., 2000).

> chtest <- achisq.test(Observed ~ offset(log(Expected)),

+ as(nc, "data.frame"), "multinom", 999)

> chtest

Chi-square test for overdispersion

Type of boots.: parametric

Model used when sampling: Multinomial

Number of simulations: 999

Statistic: 225.5723

p-value : 0.001

Note that in this case we know that the asymptotic distribution of the test
statistic is a chi-square with n − 1 degrees of freedom and that an exact test
can be done instead of re-sampling (however, it may still be useful for small
samples and recall that we may be interested in a Monte Carlo Test using a
Negative Binomial).

> 1 - pchisq(chtest$t0, 100 - 1)

[1] 7.135514e-12

334 11 Disease Mapping

Potthoff and Whittinghill (1966) proposed another test of homogeneity of
the means of different Poisson distributed variables, which can be used to test
the homogeneity of the relative risks (Wakefield et al., 2000). The alternative
hypothesis is that the relative risks are drawn from a gamma distribution with
mean λ and variance σ2:

H0 : θ1 = . . . = θn = λ,
H1 : θi ∼ Ga(λ2/σ2, λ/σ2).

The test statistic is given by

PW = E+

∑ Oi(Oi − 1)
Ei

. (11.1)

The alternative hypothesis of this test is that the Oi are distributed following
a Negative Binomial distribution, as explained before and, therefore, this test
can also be considered as a test of over-dispersion.

> pwtest <- pottwhitt.test(Observed ~ offset(log(Expected)),

+ as(nc, "data.frame"), "multinom", 999)

Theasymptotic distribution of this statistic isNormalwithmeanO+(O+−1)
and variance 2nO+(O+ − 1), so a one-side test can be done as follows:

> Oplus <- sum(nc$Observed)

> 1 - pnorm(pwtest$t0, Oplus * (Oplus - 1), sqrt(2 * 100 *

+ Oplus * (Oplus - 1)))

[1] 0

Other tests for over-dispersion included in DCluster are the likelihood ra-
tio test and some of the score tests proposed in Dean (1992). Although they
are not described here, all these tests agree with the previous results obtained
before and support the fact that the relative risks are not homogeneous and
the observed cases are over-dispersed. Therefore, we have preferred to use a
Negative Binomial to produce the simulations needed to assess the significance
of some of the methods described in the remainder of this section. McMillen
(2003) has addressed the importance of choosing the right model in a sta-
tistical analysis, and how autocorrelation can appear as a result of a wrong
specification of the model.

In addition, Loh and Zhou (2007) discuss the effect of not accounting for
extra-Poisson variation and sampling from the wrong distribution when detec-
tion of clusters of disease employs the spatial scan statistic (see Sect. 11.5.6).
Loh and Zhou (2007) propose a correction based on estimating the distribu-
tion of the test statistics by sampling from a distribution that accounts for
spatial correlation and other factors (for example, covariates). This approach
produces more reliable p-values than the original test. Cressie and Read (1989)
already mentioned that the Poisson model was not appropriate for the SIDS

11.5 Detection of Clusters of Disease 335

data due to the presence of over-dispersion and that other models that take
it into account would be more appropriate.

In case of doubt, the reader is advised to assess the significance of a given
test by using the Multinomial distribution. This is the standard procedure to
assess the significance of the test statistic by Monte Carlo in this scenario. See
Waller and Gotway (2004, pp. 202–203) for a discussion on this issue.

A first evaluation of the presence of clusters in the study region can be ob-
tained by checking the spatial autocorrelation. Note that using the chi-square
test, for example we can only detect that there are clear differences among
the relative risks but not if there is any spatial structure in these differences.
In other words, if neighbours tend to have similar (and higher) values. Note
that a possible scenario is that of regions having significantly different (low
and high) relative risks but with no spatial structure, in which the chi-square
test will be significant but there will not be any spatial autocorrelation. This
can happen if the scale of aggregation of the data is not taken properly into
account or the scale of the risk factors does not exceed the scale of aggregation.

11.5.2 Moran’s I Test of Spatial Autocorrelation

We have already discussed the use of Moran’s I statistic to assess the presence
of spatial autocorrelation. Here we apply Moran’s I statistic to the SMR to
account for the spatial distribution of the population. If we computed Moran’s
statistic for the Oi, we could find spatial autocorrelation only due to the spatial
distribution of the underlying population, because it is well known that the
higher the population, the higher the number of cases. Binary weights are used
depending on whether two regions share a common boundary or not. Spatial
autocorrelation is still found even after accounting for over-dispersion.

> col.W <- nb2listw(ncCR85, zero.policy = TRUE)

> moranI.test(Observed ~ offset(log(Expected)), as(nc,

+ "data.frame"), "negbin", 999, listw = col.W, n = length(ncCR85),

+ S0 = Szero(col.W))

Moran's I test of spatial autocorrelation

Type of boots.: parametric

Model used when sampling: Negative Binomial

Number of simulations: 999

Statistic: 0.2385172

p-value : 0.001

11.5.3 Tango’s Test of General Clustering

Tango (1995) proposed a similar test of global clustering by comparing the
observed and expected number of cases in each region. He points out that
different types of interactions between neighbouring regions can be considered

336 11 Disease Mapping

and he proposes a measure of strength based on a decaying function of the
distance between two regions.

Briefly, the statistic proposed by Tango is

T = (r − p)TA(r − p)

⎧⎨
⎩

rT = [O1/O+, . . . , On/O+],
pT = [E1/E+, . . . , En/E+],
A = (aij) closeness matrix,

(11.2)

where aij = exp{−dij/φ} and dij is the distance between regions i and j,
measured as the distance between their centroids. φ is a (positive) constant
that reflects the strength of the dependence between areas and the scale at
which the interaction occurs.

In our example, we construct the dependence matrix as suggested by Tango
and, in addition, we take φ = 100 to simulate a smooth decrease of the rela-
tionship between two areas as their relative distance increases. It is advisable
to try different values of φ because this can have an important impact on
the results and the significance of the test. Constructing this matrix in R is
straightforward using some functions from package spdep, as shown in the fol-
lowing code below. In the computations the weights are globally re-scaled, but
this does not affect the significance of the test since they all have simply been
divided by the same constant. Furthermore, we have taken the approximate
location of the county seats from nc.sids (columns x and y), which are in
UTM (zone 18) projection. Note that using the centroids as the county seats
– as computed by coordinates(nc) – may lead to slightly different coordinates
and this may have an impact on the results of this and other tests.

> data(nc.sids)

> idx <- match(nc$NAME, rownames(nc.sids))

> nc$x <- nc.sids$x[idx]

> nc$y <- nc.sids$y[idx]

> coords <- cbind(ncx, ncy)

> dlist <- dnearneigh(coords, 0, Inf)

> dlist <- include.self(dlist)

> dlist.d <- nbdists(dlist, coords)

> phi <- 100

> col.W.tango <- nb2listw(dlist, glist = lapply(dlist.d,

+ function(x, phi) {

+ exp(-x/phi)

+ }, phi = phi), style = "C")

After computing the adjacency matrix we are ready to compute Tango’s
test of general clustering, which points out the presence of global clustering.

> tango.test(Observed ~ offset(log(Expected)), as(nc, "data.frame"),

+ "negbin", 999, listw = col.W.tango, zero.policy = TRUE)

11.5 Detection of Clusters of Disease 337

Tango's test of global clustering

Type of boots.: parametric

Model used when sampling: Negative Binomial

Number of simulations: 999

Statistic: 0.000483898

p-value : 0.049

11.5.4 Detection of the Location of a Cluster

So far we have considered methods that assess only the presence of hetero-
geneity of risks in the study area and give a general evaluation of the presence
of clusters. To detect the actual location of the clusters present in the area
a different approach must be followed. A useful family of methods that can
help in this purpose are scan statistics (Hjalmars et al., 1996). These methods
are based on a moving window that covers only a few areas each time and for
which a test of clustering is carried out locally. By repeating this procedure
throughout the study area, it will be possible to detect the locations of clusters
of disease.

Scan methods usually differ in the way the window is defined, how it is
moved over the area, and how the local test of clustering is carried. A re-
cent review of these methods has appeared in Statistics in Medicine (Law-
son et al., 2006). In this section we only refer to Openshaw’s Geographical
Analysis Machine (Openshaw et al., 1987) and Kulldorff’s statistic (Kulldorff
and Nagarwalla, 1995), because the latter is probably the first scan method
proposed and the former is a widely established (and used) methodology.

11.5.5 Geographical Analysis Machine

Openshaw’s Geographical Analysis Machine considers a regular grid of points
{(xi, yi)}p

k=1 over the study region at which a circular window is placed in turn.
The test only considers the regions whose centroids are inside the window and
it is based on comparing the total number of observed cases in the window
(Ok+) to the total of expected cases in the window (Ek+) to assess if the latter
is significantly high. Openshaw et al. (1987) define this test as the (one tailed)
p-value of Ok+, assuming that it follows a Poisson distribution with mean Ek+.
This procedure can be generalised and, if we have signs that the observed
number of cases does not follow a Poisson distribution, the p-value can be
obtained by simulation (Gómez-Rubio et al., 2005). Finally, if the current
test is significant, the circle is plotted on the map. Alternatively, only the
centre of each significant cluster can be plotted for the sake of simplicity and
visualisation. Note also that we need to project the cluster centres back to
longitude/latitude to be able to plot them on the map of North Carolina.

> sidsgam <- opgam(data = as(nc, "data.frame"), radius = 30,

+ step = 10, alpha = 0.002)

> gampoints <- SpatialPoints(sidsgam[, c("x", "y")] * 1000,

+ CRS("+proj=utm +zone=18 +datum=NAD27"))

338 11 Disease Mapping

Fig. 11.17. Results of Openshaw’s GAM. The dots represent the centre of the
clusters

> library(rgdal)

> ll <- CRS("+proj=longlat +datum=NAD27")

> gampoints <- spTransform(gampoints, ll)

> gam.layout <- list("sp.points", gampoints)

When the complete area has been screened, we will probably have found
several places where many overlapping clusters have been found, as shown in
Fig. 11.17, where the centres of the clusters found have been plotted. This is
due to the fact that the tests performed are not independent and, hence, very
similar clusters (i.e. most of their regions are the same) are tested. That is
the reason why Openshaw’s GAM has been highly criticised by the statistical
community and why, in order to maintain global significance, the significance
level of the local tests should be corrected. Despite this, the GAM is still
helpful as an exploratory method and to generate epidemiological hypotheses
(Cromley and McLafferty, 2002).

11.5.6 Kulldorff’s Statistic

To overcome this and other problems, Kulldorff and Nagarwalla (1995) devel-
oped a new test for the detection of clusters based on a window of variable size
that considers only the most likely cluster around a given region. Kulldorf’s
statistic works with the regions within a given circular window and the over-
all relative risk in the regions inside the window is compared to that of the
regions outside the window. This scan method is available in the SatScan™
software (http://www.satscan.org/), which includes enhancements to han-
dle covariates, detect space-time clusters, and some other functionalities.

The null hypothesis, of no clustering, is that the two relative risks are
equal, while the alternative hypothesis (clustering) is that the relative risk
inside the window is higher. This is resolved by means of a likelihood ratio
test, which has two main advantages. First, the most likely cluster can be
detected as the window with the highest value of the likelihood ratio and,
second, there is no need to correct the p-value because the simulations for

11.5 Detection of Clusters of Disease 339

different centres are independent (Waller and Gotway, 2004, p. 220). For a
Poisson model, the expression of the test statistic is as follows:

max
z∈Zi

(
Oz

Ez

)Oz
(

O+ − Oz

E+ − Ez

)O+−Oz

, (11.3)

where z is an element of Zi, the set of all circles centred at region i. These
circles are constructed so that only those that contain up to a fixed proportion
of the total population are considered.

Note that, even though we select the most likely cluster around each region,
it might not be significant. On the other hand, we may have more than one
significant cluster, around two or more different regions, and that some clusters
may overlap each other. When more than one cluster is found, we can consider
the cluster with the lowest p-value as the primary or most prominent in the
study region. Secondary clusters, that do not overlap with the former, may be
considered too.

Loh and Zhou (2007) show that when data are over-dispersed, the classi-
cal spatial scan statistic will produce more false positives than the nominal
significance level. To correct for this, they propose sampling from a different
distribution that accounts for spatial correlation. The Negative Binomial can
be used to account for the extra-variability, which may be caused by spatial
autocorrelation coming from unmeasured covariates, and estimate the distri-
bution of the test statistic under over-dispersion.

> mle <- calculate.mle(as(nc, "data.frame"), model = "negbin")

> thegrid <- as(nc, "data.frame")[, c("x", "y")]

> knresults <- opgam(data = as(nc, "data.frame"),

+ thegrid = thegrid, alpha = 0.05, iscluster = kn.iscluster,

+ fractpop = 0.15, R = 99, model = "negbin",

+ mle = mle)

The most likely cluster for the SIDS data set is shown in Fig. 11.18. The
p-value is 0.04, which means that the cluster is significant.

The general procedure of application of this method includes testing each
area as the centre of a possible cluster, although it can only be used on a single

Kulldorff’s method

Easting

N
or

th
in

g

centre
cluster

Fig. 11.18. Results of Kulldorff’s test. The circles show the most likely cluster

340 11 Disease Mapping

point to test whether it is the centre of a cluster. This is specially helpful to
assess the risk around putative pollution sources. Note that no assumption
about the variation of the risk around the source is made. This is discussed
in Sect. 11.5.7.

11.5.7 Stone’s Test for Localised Clusters

As an alternative to the detection of clusters of disease, we may have already
identified a putative pollution source and wish to investigate whether there
is an increased risk around it. Stone (1988) developed a test that considers
the alternative hypothesis of a descending trend around the pollution source.
Basically, if we consider θ(1), . . . , θ(n), the ordered relative risks of the regions
according to their distances to the source, the test is as follows:

H0 : θ(1) = . . . = θ(n) = λ,
H1 : θ(1) ≥ . . . ≥ θ(n).

λ is the overall relative risk, which may be one if internal standardisation has
been used. The test statistic proposed by Stone is the maximum accumulated
risk up to a certain region:

max
i

∑i
j=1 Oj∑i
j=1 Ej

.

A word of caution must be given here because, as already discussed by
many authors (Hills and Alexander, 1989, for example), focused tests should
be employed before checking the data, because a bias is introduced when
we try to use these tests on regions where an actual increased risk has been
observed. In those cases, it will be more likely to detect a cluster than usual.

As an example, we try to assess whether there is an increased risk around
Anson county, which has been spotted as an area of high risk. A call to
stone.stat will give us the value of the test statistic and the number of
regions for which the maximum accumulated risk is achieved. Later, we can
use stone.test to compute the significance of this value.

> stone.stat(as(nc, "data.frame"), region = which(nc$NAME ==

+ "Anson"))

region

4.726392 1.000000

> st <- stone.test(Observed ~ offset(log(Expected)), as(nc,

+ "data.frame"), model = "negbin", 99, region = which(nc$NAME ==

+ "Anson"))

> st

11.6 Other Topics in Disease Mapping 341

Stone's Test for raised incidence around locations

Type of boots.: parametric

Model used when sampling: Negative Binomial

Number of simulations: 99

Statistic: 4.726392

p-value : 0.01

As the results show, the size of the cluster is 1 (just Anson county), which
turns out to be highly significant.

11.6 Other Topics in Disease Mapping

Although we have tried to cover a wide range of analyses in this chapter, we
have not been able to include other important topics, such as the detection of
non-circular clusters (see, for example Tango and Takahashi, 2005), spatio-
temporal disease mapping (see, for example Mart́ınez-Beneito et al., 2008, and
the references therein), or the joint modelling of several diseases (Held et al.,
2005). Other data sets and models could be used by making the corresponding
modifications to the R and WinBUGS code shown here. Some examples are
availabe in Lawson et al. (2003). Furthermore, Banerjee et al. (2004) describe
a number of other possible Bayesian analyses of spatial data and provide data
and WinBUGS code in the associated website, which the reader should be
able to reproduce using the guidelines provided in this chapter.

Afterword

Both parts of this book have quite consciously tried not to give authoritative
advice on choices of methods or techniques.1 The handling and analysis of
spatial data with R continues to evolve – this is implicit in open source software
development. It is also an important component attempting to offer applied
researchers access to accepted and innovative alternatives for data analysis,
and applied statisticians with representations of spatial data that make it
easier to test and develop new analytical tools.

A further goal has been to provide opportunities for bringing together the
various camps and traditions analysing spatial data, to make it somewhat
easier to see that their ways of conducting their work are not so different
from one another in practise. It has always been worrying that fields like dis-
ease mapping or spatial econometrics, with very similar data scenarios, make
different choices with regard to methods, and treatments of the assumptions
underlying those methods, in their research practise. Research practise evolves,
and learning from a broader spread of disciplines must offer the chance to avoid
choices that others have found less satisfactory, to follow choices from which
others have benefitted and to participate in innovation in methods.

This makes participation in the R community, posting questions or sug-
gestions, reporting apparent bugs not only a practical activity, but also an
affirmation that science is fostered more by openness than the unwarranted
restriction of findings. In the context of this book, and as we said in the
preface, we would be grateful for messages pointing out errors; errata will be
posted on the book website (http://www.asdar-book.org).

1 An illustration from an email exchange between the authors:“I think we are trying
to enable people to do what they want, even if they shoot themselves in the feet
(but in a reproducible way)!”

344 Afterword

R and Package Versions Used

• R version 2.6.2 (2008-02-08), i686-pc-linux-gnu
• Base packages: base, datasets, graphics, grDevices, methods, stats, utils
• Other packages: adapt 1.0-4, boot 1.2-32, class 7.2-41, classInt 0.1-9, coda

0.13-1, DCluster 0.2, digest 0.3.1, e1071 1.5-18, epitools 0.4-9, foreign 0.8-
24, gpclib 1.4-1, graph 1.16.1, gstat 0.9-44, lattice 0.17-6, lmtest 0.9-21,
maps 2.0-39, maptools 0.7-7, Matrix 0.999375-9, mgcv 1.3-29, nlme 3.1-
88, pgirmess 1.3.6, pkgDepTools 1.4.1, R2WinBUGS 2.1-8, RandomFields
1.3.30, RBGL 1.14.0, RColorBrewer 1.0-2, rgdal 0.5-24, Rgraphviz 1.16.0,
sandwich 2.1-0, sp 0.9-24, spam 0.13-2, spatialkernel 0.4-8, spatstat 1.12-9,
spdep 0.4-20, spgrass6 0.5-3, spgwr 0.5-1, splancs 2.01-23, tripack 1.2-11,
xtable 1.5-2, zoo 1.5-0

• Loaded via a namespace (and not attached): cluster 1.11.10, grid 2.6.2,
MASS 7.2-41, rcompgen 0.1-17, tools 2.6.2

Data Sets Used

• Auckland 90 m Shuttle Radar Topography Mission: downloaded on 26
September 2006 from the US Geological Survey, National Map Seam-
less Server http://seamless.usgs.gov/, GeoTiff file, 3 arcsec ‘Finished’
(90m) data; file 70042108.zip on book website.

• Auckland shoreline: downloaded on 7 November 2005 from the National
Geophysical Data Center coastline extractor http://www.ngdc.noaa.
gov/mgg/shorelines/shorelines.html; file auckland_mapgen.datonbook
website.

• Biological cell centres: available as data(cells) from spatstat, documented
in Ripley (1977).

• Broad Street cholera mortalities: original files provided by Jim Detwiler,
who had collated them for David O’Sullivan for use on the cover of
O’Sullivan and Unwin (2003), based on earlier work by Waldo Tobler and
others; this version is available as a compressed archive of a GRASS loca-
tion in file snow_location.tgz, and a collection of GeoTiff and shapefiles
exported from this location in file snow_files.zip on the book website.

• California redwood trees: available as data(redwoodfull) from spatstat,
documented in Strauss (1975).

• Cars: available as data(cars) from datasets.
• CRAN mirrors: locations of CRAN mirrors 1 October 2005; file on book

website CRAN051001a.txt.
• Japan shoreline: available in the ‘world’ database provided by maps.
• Japanese black pine saplings: available as data(japanesepines) from spat-

stat, documented in Numata (1961).
• Lansing Woods maple trees: available as data(lansing) from spatstat, doc-

umented in Gerard (1969).

Afterword 345

• Loggerhead turtle: downloaded on 2 November 2005 with permission from
SEAMAP, (Read et al., 2003), data set 105; data described in Nichols et al.
(2000); file seamap105_mod.csv on book website.

• Manitoulin Island: created using Rgshhs in maptools from the GSHHS high
resolution file gshhs_h.b, version 1.5, of 3 April 2007, downloaded from
ftp://ftp.soest.hawaii.edu/pwessel/gshhs.

• Maunga Whau volcano: available as data(volcano) from datasets.
• Meuse bank: available as data(meuse) from sp, supplemented by

data(meuse.grid) and data(meuse.riv), and documented in Rikken and
Van Rijn (1993) and Burrough and McDonnell (1998).

• New York leukemia: used and documented extensively in Waller and
Gotway (2004) and with data made available in Chap. 9 of http://
www.sph.emory.edu/~lwaller/WGindex.htm; the data import process is
described in the help file of NY_data in spdep; geometries downloaded
from the CIESIN server at ftp.ciesin.columbia.edu, file /pub/census/
usa/tiger/ny/bna_st/t8_36.zip, and extensively edited; a zip archive
NY_data.zip of shapefiles and a GAL format neighbours list is on the book
website.

• North Carolina SIDS: shapefile sids.shp (based on geometries downloaded
from http://sal.agecon.uiuc.edu/datasets/sids.zip) and GAL for-
mat neighbour lists ncCC89.gal and ncCR85.gal distributed with spdep,
data from Cressie (1993), neighbour lists from Cressie and Chan (1989)
and Cressie and Read (1985), documented in the nc.sids help page.

• North Derbyshire asthma study: the data has been studied by Diggle and
Rowlingson (1994), Singleton et al. (1995), and Diggle (2003); the data
are made available in anonymised form by permission from Peter Diggle
as shapefiles in a zip archive north_derby_asthma.zip on the book website.

• Scottish lip cancer: Shapefile and data file downloaded from the book web-
site of Waller and Gotway (2004), http://www.sph.emory.edu/~lwaller/
WGindex.htm, Chaps. 2 and 9.

• Spearfish: downloaded as GRASS location from http://grass.itc.it/
sampledata/spearfish_grass60data-0.3.tar.gz; this data set has been
the standard GRASS location for tutorials and is documented in Neteler
and Mitasova (2004).

• US 1999 SAT scores: state boundaries available in the ‘state’ database
provided by maps, original attribute data downloaded on 2 November
2005 from http://www.biostat.umn.edu/~melanie/Data/ and supple-
mented with variable names and state names; the data set is also avail-
able from the website of Banerjee et al. (2004), http://www.biostat.
umn.edu/~brad/data/state-sat.dat, and the modified version as file
state.sat.data_mod.txt from the book website.

• US Census 1990 Counties: Three shapefiles for Virginia and North and South
Carolina downloaded from the US Census Bureau cartographic boundary
files site for 1990 county and county equivalent areas at http://www.
census.gov/geo/www/cob/co1990.html; one text file by county defining

346 Afterword

metropolitan areamembership also from theUSCensusBureau sitehttp://
blueprod.ssd.census.gov, file /population/estimates/metro-city/
90mfips.txt available as file 90mfips.txt on the book website.

• World volcano locations: downloaded from the National Geophysical Data
Center http://www.ngdc.noaa.gov/hazard/volcano.shtml, available as
file data1964al.xy from book website.

References

Abrahamsen, P. and Benth, F. E. (2001). Kriging with inequality constraints.
Mathematical Geology, 33:719–744. [229]

Akima, H. (1978). A method of bivariate interpolation and smooth surface
fitting for irregularly distributed data points. ACM Transactions on Math-
ematical Software, 4:148–159. [233]

Andrade Neto, P. R. and Ribeiro Jr., P. J. (2005). A process and environment
for embedding the R software into TerraLib. In VII Brazilian Symposium
on Geoinformatics, Campos do Jordão. [109]

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer,
Dordrecht. [289, 290]

Anselin, L. (2002). Under the hood: Issues in the specification and inter-
pretation of spatial regression models. Agricultural Economics, 27:247–267.
[289, 290]

Anselin, L., Bera, A. K., Florax, R., and Yoon, M. J. (1996). Simple diagnos-
tic tests for spatial dependence. Regional Science and Urban Economics,
26:77–104. [290]

Anselin, L., Syabri, I., and Kho, Y. (2006). GeoDa: An introduction to spatial
data analysis. Geographical Analysis, 38:5–22. [256]

Assunção, R. and Reis, E. A. (1999). A new proposal to adjust Moran’s I for
population density. Statistics in Medicine, 18:2147–2162. [266]

Avis, D. and Horton, J. (1985). Remarks on the sphere of influence graph.
In Goodman, J. E., editor, Discrete Geometry and Convexity. New York
Academy of Sciences, New York, pp 323–327. [245]

Baddeley, A. and Turner, R. (2005). Spatstat: An R package for analyzing
spatial point patterns. Journal of Statistical Software, 12(6):1–42. [156]

Baddeley, A., Möller, J., and Waagepetersen, R. (2000). Non- and semi-para-
metric estimation of interaction in inhomogeneous point patterns. Statistica
Neerlandica, 54:329–350. [172, 186, 187]

Baddeley, A., Gregori, P., Mateu, J., Stoica, R., and Stoyan, D., editors (2005).
Case Studies in Spatial Point Process Modeling. Lecture Notes in Statistics
185, Springer, Berlin. [190]

348 References

Baddeley, A. J. and Silverman, B. W. (1984). A cautionary example on the use
of second-order methods for analysing point patterns. Biometrics, 40:1089–
1093. [185]

Bailey, T. C. and Gatrell, A. C. (1995). Interactive Spatial Data Analysis.
Longman, Harlow. [13]

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). Hierarchical Modeling
and Analysis for Spatial Data. Chapman & Hall, London. [7, 13, 240, 259,
274, 296, 311, 314, 321, 325, 341, 345]

Bavaud, F. (1998). Models for spatial weights: A systematic look. Geographical
Analysis, 30:153–171. [251]

Beale, C. M., Lennon, J. J., Elston, D. A., Brewer, M. J., and Yearsley, J. M.
(2007). Red herrings remain in geographical ecology: A reply to Hawkins et
al. (2007). Ecography, 30:845–847. [11]

Becker, R. A., Chambers, J. M., and Wilks, A. R. (1988). The New S Language.
Chapman & Hall, London. [2, 38]

Berman, M. and Diggle, P. J. (1989). Estimating weighted integrals of the
second-order intensity of a spatial point process. Journal of the Royal Sta-
tistical Society B, 51:81–92. [165, 166]

Bernardinelli, L. and Montomoli, C. (1992). Empirical Bayes versus fully
Bayesian analysis of geographical variation in disease risk. Statistics in
Medicine, 11:983–1007. [320]

Besag, J. and Newell, J. (1991). The detection of clusters in rare diseases.
Journal of the Royal Statistical Society A, 154:143–155. [332]

Besag, J., York, J., and Mollie, A. (1991). Bayesian image restoration, with
two applications in spatial statistics. Annals of the Institute of Statistical
Mathematics, 43:1–59. [321, 326]

Besag, J., Green, P., Higdon, D., and Mengersen, K. (1995). Bayesian compu-
tation and stochastic systems. Statistical Science, 10:3–41. [330]

Best, N., Cowles, M. K., and Vines, K. (1995). CODA: Convergence diagno-
sis and output analysis software for Gibbs sampling output, Version 0.30.
Technical report, MRC Biostatistics Unit, Cambridge. [324]

Best, N. G., Waller, L. A., Thomas, A., Conlon, E. M., and Arnold, R. A.
(1999). Bayesian models for spatially correlated diseases and exposure data.
In Bernardo, J., Berger, J. O., Dawid, A. P., and Smith, A. F. M., editors,
Bayesian Statistics 6. Oxford University Press, Oxford, pp 131–156. [326]

Bivand, R. S. (2000). Using the R statistical data analysis language on GRASS
5.0 GIS data base files. Computers and Geosciences, 26:1043–1052. [99]

Bivand, R. S. (2002). Spatial econometrics functions in R: Classes and meth-
ods. Journal of Geographical Systems, 4:405–421. [151, 289]

Bivand, R. S. (2006). Implementing spatial data analysis software tools in R.
Geographical Analysis, 38:23–40. [289]

Bivand, R. S. (2008). Implementing representations of space in economic ge-
ography. Journal of Regional Science, 48:1–27. [12, 259]

Bivand, R. S. and Portnov, B. A. (2004). Exploring spatial data analysis tech-
niques using R: The case of observations with no neighbours. In Anselin, L.,

References 349

Florax, R. J. G. M., and Rey, S. J., editors, Advances in Spatial Economet-
rics: Methodology, Tools, Applications. Springer, Berlin, pp 121–142. [255]

Bivand, R. S. and Szymanski, S. (1997). Spatial dependence through local
yardstick competition: Theory and testing. Economics Letters, 55:257–265.
[12]

Bivand, R. S., Müller, W., and Reder, M. (2008). Power calculations for global
and local Moran’s I. Technical report, Department of Applied Statistics,
Johannes Kepler University, Linz, Austria. [264]

Bordignon, M., Cerniglia, F., and Revelli, F. (2003). In search of yardstick
competition: A spatial analysis of Italian municipality property tax setting.
Journal of Urban Economics, 54:199–217. [12]

Braun, W. J. and Murdoch, D. J. (2007). A First Course in Statistical Pro-
gramming with R. Cambridge University Press, Cambridge. [23, 127]

Brewer, C. A. and Pickle, L. (2002). Comparison of methods for classifying
epidemiological data on choropleth maps in series. Annals of the Association
of American Geographers, 92:662–681. [332]

Brewer, C. A., MacEachren, A. M., Pickle, L. W., and Herrmann, D. J. (1997).
Mapping mortality: Evaluating color schemes for choropleth maps. Annals
of the Association of American Geographers, 87:411–438. [332]

Brewer, C. A., Hatchard, G. W., and Harrower, M. A. (2003). Colorbrewer
in print: A catalog of color schemes for maps. Cartography and Geographic
Information Science, 30:5–32. [76, 332]

Brody, H., Rip, M. R., Vinten-Johansen, P., Paneth, N., and Rachman, S.
(2000). Map-making and myth-making in Broad Street: The London cholera
epidemic, 1854. Lancet, 356:64–68. [104, 105]

Burrough, P. A. and McDonnell, R. A. (1998). Principles of Geographical
Information Systems. Oxford University Press, Oxford. [4, 6, 116, 191, 345]

Calenge, C. (2006). The package adehabitat for the R software: A tool for
the analysis of space and habitat use by animals. Ecological Modelling,
197:516–519. [107]

Carstairs, V. (2000). Socio-economic factors at areal level and their relation-
ship with health. In Elliot, P., Wakefield, J., Best, N., and Briggs, D., ed-
itors, Spatial Epidemiology: Methods and Applications. Oxford University
Press, Oxford, pp 51–67. [312]

Chambers, J. M. (1998). Programming with Data. Springer, New York. [3, 27,
127]

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Chapman
& Hall, London. [24, 25, 26]

Chilès, J. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty.
Wiley, New York. [191]

Choynowski, M. (1959). Map based on probabilities. Journal of the American
Statistical Society, 54:385–388. [316]

Chrisman, N. (2002). Exploring Geographic Information Systems. Wiley, New
York. [6, 8]

350 References

Christensen, R. (1991). Linear Models for Multivariate, Time Series, and Spa-
tial Data. Springer, New York. [191]

Clark, A. B. and Lawson, A. B. (2004). An evaluation of non-parametric
relative risk estimators for disease mapping. Computational Statistics and
Data Analysis, 47:63–78. [166]

Clayton, D. and Kaldor, J. (1987). Empirical Bayes estimates of age-
standardized relative risks for use in disease mapping. Biometrics,
43:671–681. [90, 316, 318]

Cleveland, W. S. (1993). Visualizing Data. Hobart Press, Summit, NJ. [57,
68, 192]

Cleveland, W. S. (1994). The Elements of Graphing Data. Hobart Press, Sum-
mit, NJ. [57, 68]

Cliff, A. D. and Ord, J. K. (1973). Spatial Autocorrelation. Pion, London. [257]
Cliff, A. D. and Ord, J. K. (1981). Spatial Processes. Pion, London. [12, 253]
Cowles, M. K. and Carlin, B. P. (1996). Markov Chain Monte Carlo conver-

gence diagnostics: A comparative review. Journal of the American Statisti-
cal Association, 91:883–904. [328]

Cox, C. R. (1955). Some statistical methods connected with series of events
(with discussion). Journal of the Royal Statistical Society B, 17:129–164.
[187]

Crawley, M. J. (2005). Statistics: An Introduction using R. Wiley, Chichester.
[25]

Crawley, M. J. (2007). The R Book. Wiley, Chichester. [25]
Cressie, N. (1985). Fitting variogram models by weighted least squares. Math-

ematical Geology, 17:563–586. [202]
Cressie, N. (1993). Statistics for Spatial Data, Revised Edition. Wiley, New

York. [12, 15, 152, 191, 198, 240, 259, 274, 345]
Cressie, N. and Chan, N. H. (1989). Spatial modeling of regional variables.

Journal of the American Statistical Association, 84:393–401. [312, 315, 320,
325, 345]

Cressie, N. and Read, T. R. C. (1985). Do sudden infant deaths come in
clusters? Statistics and Decisions, 3:333–349. [312, 313, 326, 345]

Cressie, N. and Read, T. R. C. (1989). Spatial data analysis of regional counts.
Biometrical Journal, 31:699–719. [334]

Cromley, E. K. and McLafferty, S. L. (2002). GIS and Public Health. Guilford
Press, New York. [338]

Dalgaard, P. (2002). Introductory Statistics with R. Springer, New York.
[25, 152]

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their
Application. Cambridge University Press, Cambridge. [332]

Dean, C. B. (1992). Testing for overdispersion in Poisson and Binomial regres-
sion models. Journal of the American Statistical Association, 87:451–457.
[334]

Deutsch, C. and Journel, A. (1992). GSLIB: Geostatistical Software Library
and User’s Guide. Oxford University Press, New York. [191]

References 351

Devine, O. J. and Louis, T. A. (1994). A constrained empirical Bayes estimator
for incidence rates in areas with small populations. Statistics in Medicine,
13:1119–1133. [321]

Devine, O. J., Louis, T. A., and Halloran, M. E. (1994). Empirical Bayes es-
timators for spatially correlated incidence rate. Environmetrics, 5:381–398.
[321]

Diggle, P. J. (1985). A kernel method for smoothing point process data.
Applied Statistics, 34:138–147. [165, 166]

Diggle, P. J. (1990). A point process modelling approach to raised incidence
of a rare phenomenon in the vicinity of a prespecified point. Journal of the
Royal Statistical Society A, 153:349–362. [173, 182]

Diggle, P. J. (2000). Overview of statistical methods for disease mapping and
its relationship to cluster detection. In Elliott, P., Wakefield, J., Best, N.,
and Briggs, D., editors, Spatial Epidemiology: Methods and Applications.
Oxford University Press, Oxford, pp 87–103. [173, 184]

Diggle, P. J. (2003). Statistical Analysis of Spatial Point Patterns. Arnold,
London, second edition. [155, 156, 158, 161, 163, 164, 166, 168, 169, 170,
171, 172, 184, 190, 345]

Diggle, P. J. (2006). Spatio-temporal point processes: Methods and appli-
cations. In Finkenstadt, B., Held, L., and Isham, V., editors, Statistical
Methods for Spatio-Temporal Systems. CRC, Boca Raton, pp 1–46. [190]

Diggle, P. J. and Chetwynd, A. (1991). Second-order analysis of spatial clus-
tering for inhomogeneous populations. Biometrics, 47:1155–1163. [173, 184,
185]

Diggle, P. J. and Ribeiro Jr., P. J. (2007). Model-Based Geostatistics. Springer,
New York. [235]

Diggle, P. J. and Rowlingson, B. (1994). A conditional approach to point
process modelling of elevated risk. Journal of the Royal Statistical Society A,
157:433–440. [158, 159, 178, 182, 183, 184, 345]

Diggle, P. J., Elliott, P., Morris, S., and Shaddick, G. (1997). Regression
modelling of disease risk in relation to point sources. Journal of the Royal
Statistical Society A, 160:491–505. [184]

Diggle, P. J., Tawn, J. A., and Moyeed, R. A. (1998). Model-based geostatis-
tics. Applied Statistics, 47:299–350. [230]

Diggle, P. J., Morris, S., and Wakefield, J. (2000). Point-source modelling
using case-control data. Biostatistics, 1:89–105. [173]

Diggle, P. J., Gómez-Rubio, V., Brown, P. E., Chetwynd, A., and Gooding,
S. (2007). Second-order analysis of inhomogeneous spatial point processes
using case-control data. Biometrics, 63:550–557. [173, 175, 186, 187, 188]

Diniz-Filho, J. A., Bini, L. M., and Hawkins, B. A. (2003). Spatial auto-
correlation and red herrings in geographical ecology. Global Ecology and
Biogeography, 12:53–64. [11]

Diniz-Filho, J. A., Hawkins, B. A., Bini, L. M., De Marco Jr., P., and Black-
burn, T. M. (2007). Are spatial regression methods a panacea or a Pandora’s
box? A reply to Beale et al. (2007). Ecography, 30:848–851. [11]

352 References

Dormann, C., McPherson, J., Araújo, M., Bivand, R., Bolliger, J., Carl, G.,
Davies, R., Hirzel, A., Jetz, W., Kissling, D., Kühn, I., Ohlemüller, R.,
Peres-Neto, P., Reineking, B., Schröder, B., Schurr, F., and Wilson, R.
(2007). Methods to account for spatial autocorrelation in the analysis of
species distributional data: A review. Ecography, 30:609–628. [274, 296,
300, 301]

Dray, S., Legendre, P., and Peres-Neto, P. R. (2006). Spatial modeling: A com-
prehensive framework for principle coordinate analysis of neighbor matrices
(PCNM). Ecological Modelling, 196:483–493. [302]

Elliott, P. and Wakefield, J. C. (2000). Bias and confounding in spatial epi-
demiology. In Elliott, P., Wakefield, J., Best, N., and Briggs, D., editors,
Spatial Epidemiology: Methods and Applications. Oxford University Press,
Oxford, pp 68–84. [312]

Elliott, P., Wakefield, J., Best, N., and Briggs, D., editors (2000). Spatial
Epidemiology. Methods and Applications. Oxford University Press, Oxford.
[173, 311]

English, D. (1992). Geographical epidemiology and ecological studies. In El-
liott, P., Cuzick, J., English, D., and Stern, R., editors, Geographical and
Environmental Epidemiology. Methods for Small-Area Studies. Oxford Uni-
versity Press, Oxford, pp 3–13. [326]

Erle, S., Gibson, R., and Walsh, J. (2005). Mapping Hacks. O’Reilly, Se-
bastopol, CA. [7]

Faraway, J. J. (2004). Linear Models with R. Chapman & Hall, Boca Raton.
[152]

Faraway, J. J. (2006). Extending Linear Models with R: Generalized Linear,
Mixed Effects and Nonparametric Regression Models. Chapman & Hall,
Boca Raton. [152]

Fortin, M.-J. and Dale, M. (2005). Spatial Analysis: A Guide for Ecologists.
Cambridge University Press, Cambridge. [13, 240, 259, 268, 274]

Fotheringham, A. S., Brunsdon, C., and Charlton, M. E. (2002). Geographi-
cally Weighted Regression: The Analysis of Spatially Varying Relationships.
Wiley, Chichester. [306, 307]

Fox, J. (2002). An R and S-Plus Companion to Applied Regression. Sage Pub-
lications, Thousand Oaks, CA. [152]

Gatrell, A. C., Bailey, T. C., Diggle, P. J., and Rowlingson, B. S. (1996). Spa-
tial point pattern analysis and its application in geographical epidemiology.
Transactions of the Institute of British Geographers, 21:256–274. [172]

Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press, Cambridge. [322]

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using
multiple sequences (with discussion). Statistical Science, 7:457–472. [328]

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian
Data Analysis. CRC, Boca Raton. [322]

References 353

Gerard, D. J. (1969). Competition quotient: A new measure of the compe-
tition affecting individual forest trees. Research Bulletin 20, Agricultural
Experiment Station, Michigan State University. [169, 344]

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to
calculating posterior moments. In Bernado, J. M., Berger, J. O., Dawid,
A. P., and Smith, A. F. M., editors, Bayesian Statistics 4. Oxford University
Press, Oxford, pp 169–194. [329]

Ghosh, M., Natarajan, K., Stroud, T. W. F., and Carlin, B. P. (1998). Gen-
eralized linear models for small-area estimation. Journal of the American
Statistical Association, 93:273–282. [326]

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., editors (1996). Markov
Chain Monte Carlo in Practice. Chapman & Hall, London. [322]

Gómez-Rubio, V. and López-Qúılez, A. (2005). RArcInfo: Using GIS data
with R. Computers and Geosciences, 31:1000–1006. [88, 93]

Gómez-Rubio, V., Ferrándiz-Ferragud, J., and López-Qúılez, A. (2005). De-
tecting clusters of disease with R. Journal of Geographical Systems, 7:189–
206. [332, 337]

Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford
University Press, Oxford. [191, 219, 227]

Gotway, C. A. and Young, L. J. (2002). Combining incompatible spatial data.
Journal of the American Statistical Association, 97:632–648. [114]

Griffith, D. A. (1995). Some guidelines for specifying the geographic weights
matrix contained in spatial statistical models. In Arlinghaus, S. L. and
Griffith, D. A., editors, Practical Handbook of Spatial Statistics. CRC, Boca
Raton, pp 65–82. [251]

Griffith, D. A. and Peres-Neto, P. R. (2006). Spatial modeling in ecology: The
flexibility of eigenfunction spatial analyses. Ecology, 87:2603–2613. [302]

Guttorp, P. (2003). Environmental statistics – a personal view. International
Statistical Review, 71:169–180. [114]

Haining, R. P. (2003). Spatial Data Analysis: Theory and Practice. Cambridge
University Press, Cambridge. [13, 151, 311, 314, 321, 332]

Härdle, W., Müller, M., Sperlich, S., and Werwatz, A. (2004). Nonparametric
and Semiparametric Models. Springer-Verlag, Berlin. [168]

Hastie, T. and Tibshirani, R. (1990). Generalised Additive Models. Chapman
& Hall, London. [297]

Hawkins, B. A., Diniz-Filho, J. A., Bini, L. M., De Marco Jr., P., and Black-
burn, T. M. (2007). Red herrings revisited: Spatial autocorrelation and pa-
rameter estimation in geographical ecology. Ecography, 30:375–384. [11]

Held, L., Natário, I., Fento, S. E., Rue, H., and Becke, N. (2005). Towards
joint disease mapping. Statistical Methods in Medical Research, 14:61–82.
[341]

Hepple, L. W. (1998). Exact testing for spatial autocorrelation among
regression residuals. Environment and Planning A, 30:85–108. [264]

354 References

Heuvelink, G. B. M. (1998). Error Propagation in Environmental Models with
GIS. Taylor & Francis, London. [115]

Heywood, I., Cornelius, S., and Carver, S. (2006). An Introduction to Geo-
graphical Information Systems. Pearson Education, Harlow, England. [6]

Hills, M. and Alexander, F. (1989). Statistical methods used in assessing the
risk of disease near a source of possible environmental pollution: A review.
Journal of the Royal Statistical Society A, 152:353–363. [340]

Hjalmars, U., Kulldorff, M., Gustafsson, G., and Nagarwalla, N. (1996). Child-
hood leukaemia in Sweden: Using GIS and a spatial scan statistic for cluster
detection. Statistics in Medicine, 15:707–715. [337]

Hjaltason, G. and Samet, H. (1995). Ranking in spatial databases. In Egen-
hofer, M. J. and Herring, J. R., editors, Advances in Spatial Databases – 4th
Symposium, SSD’95, Number 951 in Lecture Notes in Computer Science.
Springer-Verlag, Berlin, pp 83–95. [215]

Hoef, J. M. V. and Cressie, N. A. C. (1993). Multivariable spatial prediction.
Mathematical Geology, 25:219–240. [210]

Isaaks, E. and Srivastava, R. (1989). An Introduction to Applied Geostatistics.
Oxford University Press, Oxford. [191]

Jackson, C., Best, N., and Richardson, S. (2006). Improving ecological infer-
ence using individual-level data. Statistics in Medicine, 25(12):2136–2159.
[326]

Jacqmin-Gadda, H., Comenges, C., Nejjari, C., and Dartigues, J. (1997). Test-
ing of geographical correlation with adjustment for explanatory variables:
An application to dyspnoea in the elderly. Statistics in Medicine, 21:359–
370. [298]

Jarner, M. F., Diggle, P., and Chetwynd, A. G. (2002). Estimation of spa-
tial variation in risk using matched case–control data. Biometrical Journal,
44:936–945. [173]

Johnston, J. and DiNardo, J. (1997). Econometric Methods. McGraw Hill,
New York. [290]

Journel, A. G. and Huijbregts, C. J. (1978). Mining Geostatistics. Academic
Press, London. [191, 215]

Kaluzny, S. P., Vega, S. C., Cardoso, T. P., and Shelly, A. A. (1998).
S+SpatialStats, User Manual for Windows and UNIX. Springer-Verlag,
Berlin. [13, 311]

Kelejian, H. H. and Prucha, I. R. (1999). A generalized moments estimator
for the autoregressive parameter in a spatial model. International Economic
Review, 40:509–533. [295]

Kelsall, J. E. and Diggle, P. J. (1995a). Kernel estimation of relative risk.
Bernoulli, 1:3–16. [166, 173, 174, 176]

Kelsall, J. E. and Diggle, P. J. (1995b). Non-parametric estimation of spatial
variation in relative risk. Statistics in Medicine, 14:559–573. [166, 173, 174,
176]

References 355

Kelsall, J. E. and Diggle, P. J. (1998). Spatial variation in risk: A non-
parametric binary regression approach. Applied Statistics, 47:559–573. [166,
173, 178, 179, 180]

Kirkwood, R., Lynch, M., Gales, N., Dann, P., and Sumner, M. (2006). At-
sea movements and habitat use of adult male Australian fur seals (Arc-
tocephalus pusillus doriferus). Canadian Journal of Zoology, 84:1781–1788.
[130]

Kopczewska, K. (2006). Ekonometria i Statystyka Przestrzenna. CeDeWu,
Warszawa. [VIII]

Krieger, N., Williams, D. R., and Moss, N. E. (1997). Measuring social class
in US Public Health research: Concepts, methodologies, and guidelines. An-
nual Review of Public Health, 18:341–378. [326]

Kulldorff, M. and Nagarwalla, N. (1995). Spatial disease clusters: Detection
and inference. Statistics in Medicine, 14:799–810. [337, 338]

Lawson, A., editor (2005). SMMR special issue on disease mapping. Statistical
Methods in Medical Research, 14(1). [311]

Lawson, A., Gangnon, R. E., and Wartenburg, D., editors (2006). Special issue:
Developments in disease cluster detection. Statistics in Medicine, 25(5).
[311, 337]

Lawson, A. B., Browne, W. J., and Rodeiro, C. L. V. (2003). Disease Mapping
with WinBUGS and MLwiN. Wiley, Chichester. [311, 314, 321, 322, 332,
341]

Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using
literate data analysis. In Härdle, W. and Rönz, B., editors, Compstat 2002
– Proceedings in Computational Statistics. Physica, Heidelberg, Verlag, pp
575–580. [VII]

Leisch, F. and Rossini, A. J. (2003). Reproducible statistical research. Chance,
16(2):46–50. [VII]

Lennon, J. J. (2000). Red-shifts and red herrings in geographical ecology.
Ecography, 23:101–113. [11]

Leung, Y., Ma, J.-H., and Goodchild, M. F. (2004). A general framework for
error analysis in measurement-based GIS Part 1: The basic measurement-
error model and related concepts. Journal of Geographical Systems, 6:325–
354. [115]

Lin, G. and Zhang, T. (2007). Loglinear residual tests of Moran’s I autocorre-
lation and their applications to Kentucky breast cancer data. Geographical
Analysis, 3:293–310. [298]

Lloyd, C. D. (2007). Local Models for Spatial Analysis. CRC, Boca Raton.
[268, 306]

Loh, J. M. and Zhou, Z. (2007). Accounting for spatial correlation in the scan
statistic. The Annals of Applied Statistics, 1:560–584. [334, 339]

Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W. (2005).
Geographic Information Systems and Science. Wiley, Chichester. [6]

356 References

Louis, T. A. (1984). Estimating a population of parameter values using Bayes
and empirical Bayes methods. Journal of the American Statistical Society,
79:393–398. [321]

Marshall, R. J. (1991). Mapping disease and mortality rates using Empirical
Bayes estimators. Applied Statistics, 40:283–294. [318, 319]

Mart́ınez-Beneito, M. A., López-Qúılez, A., and Botella-Rocamora, P. (2008).
An autoregressive approach to spatio-temporal disease mapping. Statistics
in Medicine, 27:2874-2889. [341]

Matula, D. W. and Sokal, R. R. (1980). Properties of Gabriel graphs relevant
to geographic variation research and the clustering of points in the plane.
Geographic Analysis, 12:205–222. [245]

McCulloch, C. and Searle, S. (2001). Generalized, Linear, and Mixed Models.
Wiley, New York. [287]

McMillen, D. P. (2003). Spatial autocorrelation or model misspecification?
International Regional Science Review, 26:208–217. [334]

Mitchell, T. (2005). Web Mapping Illustrated: Using Open Source GIS Toolk-
its. O’Reilly, Sebastopol, CA. [7, 81, 110]

Möller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation
for Spatial Point Processes. CRC, Boca Raton. [155, 163, 164, 171, 190]

Murrell, P. (2006). R Graphics. CRC, Boca Raton. [38, 57]
Neteler, M. and Mitasova, H. (2004). Open Source GIS: A GRASS GIS Ap-

proach. Kluwer, Boston, Second Edition. [99, 345]
Neteler, M. and Mitasova, H. (2008). Open Source GIS: A GRASS GIS Ap-

proach. Springer, New York, Third Edition. [6, 99]
Nichols, W., Resendiz, A., J.A.Seminoff, and Resendiz, B. (2000). Transpacific

migration of a loggerhead turtle monitored by satellite telemetry. Bulletin
of Marine Science, 67:937–947. [37, 345]

Numata, M. (1961). Forest vegetation in the vicinity of Choshi. Coastal flora
and vegetation at Choshi, Chiba Prefecture IV. Bulletin of Choshi Marine
Laboratory, Chiba University, 3:28–48 [in Japanese]. [156, 157, 344]

Olson, J. M. and Brewer, C. A. (1997). An evaluation of color selections
to accommodate map users with color-vision impairments. Annals of the
Association of American Geographers, 87:103–134. [332]

Openshaw, S., Charlton, M., Wymer, C., and Craft, A. W. (1987). A Mark
I geographical analysis machine for the automated analysis of point data
sets. International Journal of Geographical Information Systems, 1:335–358.
[337]

Ord, J. K. (1975). Estimation methods for models of spatial interaction. Jour-
nal of the American Statistical Association, 70:120–126. [285]

O’Sullivan, D. and Unwin, D. J. (2003). Geographical Information Analysis.
Wiley, Hoboken, NJ. [13, 104, 116, 155, 160, 173, 240, 249, 253, 259, 268,
344]

Page, B., McKenzie, J., Sumner, M., Coyne, M., and Goldsworthy, S. (2006).
Spatial separation of foraging habitats among New Zealand fur seals. Ma-
rine Ecology Progress Series, 323:263–279. [130]

References 357

Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package.
Computers and Geosciences, 30:683–691. [210]

Pebesma, E. J. and Bivand, R. S. (2005). Classes and methods for spatial data
in R. R News, 5(2):9–13. [3]

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-Plus.
Springer, New York. [287]

Potthoff, R. F. and Whittinghill, M. (1966). Testing for homogeneity: II. The
Poisson distribution. Biometrika, 53:183–190. [334]

Prince, M. I., Chetwynd, A., Diggle, P. J., Jarner, M., Metcalf, J. V., and
James, O. F. (2001). The geographical distribution of primary biliary cir-
rhosis in a well-defined cohort. Hepatology, 34:1083–1088. [173]

R Development Core Team (2008). R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. [VII, 2]

Read, A. J., Halpin, P. N., Crowder, L. B., Hyrenbach, K. D., Best, B. D.,
and Freeman, S. A. (2003). OBIS-SEAMAP: Mapping marine mammals,
birds and turtles. Duke University. World Wide Web electronic publication.
http://seamap.env.duke.edu, Accessed on April 01, 2008. [37, 345]

Revelli, F. (2003). Reaction or interaction? Spatial process identification in
multi-tiered government structures. Journal of Urban Economics, 53:29–53.
[12]

Revelli, F. and Tovmo, P. (2007). Revealed yardstick competition: Local
government efficiency patterns in Norway. Journal of Urban Economics,
62:121–134. [12]

Rikken, M. G. J. and Van Rijn, R. P. G. (1993). Soil pollution with heavy
metals – an inquiry into spatial variation, cost of mapping and the risk
evaluation of copper, cadmium, lead and zinc in the floodplains of the meuse
west of stein. Technical Report, Department of Physical Geography, Utrecht
University. [345]

Ripley, B. D. (1976). The second order analysis of stationary point processes.
Journal of Applied Probability, 13:255–266. [171]

Ripley, B. D. (1977). Modelling spatial patterns (with discussion). Journal of
the Royal Statistical Society B, 39:172–212. [156, 157, 171, 344]

Ripley, B. D. (1981). Spatial Statistics. Wiley, New York. [12, 118]
Ripley, B. D. (1988). Statistical Inference for Spatial Processes. Cambridge

University Press, Cambridge. [12]
Ripley, B. D. (2001). Spatial statistics in R. R News, 1(2):14–15. [13]
Rowlingson, B. and Diggle, P. J. (1993). Splancs: Spatial point pattern analysis

code in S-PLUS™. Computers and Geosciences, 19:627–655. [156]
Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer,

New York. [57, 68]
Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial

Data Analysis. Chapman & Hall, London. [12, 114, 155, 160, 163, 164, 171,
173, 190, 240, 259, 260, 268, 274, 282, 287, 296, 300, 306, 311, 321]

358 References

Shekar, S. and Xiong, H., editors (2008). Encyclopedia of GIS. Springer, New
York. [6]

Sibson, R. (1981). A brief description of natural neighbor interpolation. In
Barnett, V., editor, Interpreting Multivariate Data. Wiley, Chichester, pp
21–36. [233]

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis.
Chapman & Hall, London. [165, 166]

Singleton, C. D., Gatrell, A. C., and Briggs, J. (1995). Prevalence of asthma
and related factors in primary school children in an industrial part of Eng-
land. Journal of Epidemiology and Community Health, 49:326–327. [158,
345]

Slocum, T. A., McMaster, R. B., Kessler, F. C., and Howard, H. H. (2005).
Thematic Cartography and Geographical Visualization. Pearson Prentice
Hall, Upper Saddle River, NJ. [57, 77]

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2003). WinBUGS
Version 1.4 User’s Manual. MRC Biostatistics Unit, Cambridge. http://
www.mrc-bsu.cam.ac.uk/bugs. [322]

Stein, M. (1999). Interpolation of Spatial Data: Some Theory for Kriging.
Springer, New York. [197]

Stineman, R. (1980). A consistently well behaved method of interpolation.
Creative Computing, 6:54–57. [233]

Stone, R. A. (1988). Investigating of excess environmental risks around puta-
tive sources: Statistical problems and a proposed test. Statistics in Medicine,
7:649–660. [340]

Strauss, D. J. (1975). A model for clustering. Biometrika, 62:467–475. [156,
157, 344]

Sturtz, S., Ligges, U., and Gelman, A. (2005). R2WinBUGS: A package for
running WinBUGS from R. Journal of Statistical Software, 12(3):1–16. [322]

Tait, N., Durr, P. A., and Zheng, P. (2004). Linking R and ArcGIS: De-
veloping a spatial statistical toolkit for epidemiologists. In Proceedings of
GISVET’04, Guelph, Canada. [110]

Tango, T. (1995). A class of tests for detecting general and focused clustering
of rare diseases. Statistics in Medicine, 14:2323–2334. [335]

Tango, T. and Takahashi, K. (2005). A flexibly shaped spatial scan statistic
for detecting clusters. International Journal of Health Geographics, 4:1–15.
[341]

Tiefelsdorf, M. (1998). Some practical applications of Moran’s I’s exact con-
ditional distribution. Papers in Regional Science, 77:101–129. [264]

Tiefelsdorf, M. (2000). Modelling Spatial Processes: The Identification and
Analysis of Spatial Relationships in Regression Residuals by Means of
Moran’s I. Springer, Berlin. [264]

Tiefelsdorf, M. (2002). The saddlepoint approximation of Moran’s I and local
Moran’s Ii reference distributions and their numerical evaluation. Geograph-
ical Analysis, 34:187–206. [264]

References 359

Tiefelsdorf, M. and Griffith, D. A. (2007). Semiparametric filtering of spatial
autocorrelation: The eigenvector approach. Environment and Planning A,
39:1193–1221. [302]

Tiefelsdorf, M., Griffith, D. A., and Boots, B. (1999). A variance-stabilizing
coding scheme for spatial link matrices. Environment and Planning A,
31:165–180. [251, 253]

Toussaint, G. T. (1980). The relative neighborhood graph of a finite planar
set. Pattern Recognition, 12:261–268. [245]

Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading,
MA. [151]

Unwin, D. J. (1996). Integration through overlay analysis. In Fischer, M. M.,
Scholten, H. J., and Unwin, D., editors, Spatial Analytical Perspectives on
GIS. Taylor & Francis, London, pp 129–138. [116, 117]

Venables, W. N. and Dichmont, C. M. (2004). A generalised linear model
for catch allocation: An example from Australia’s northern prawn fishery.
Fisheries Research, 70:409–426. [152]

Venables, W. N. and Ripley, B. D. (2000). S Programming. Springer, New
York. [27, 127]

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S.
Springer, New York, Fourth Edition. [11, 152, 156, 233, 300]

Venables, W. N., Smith, D. M., and the R Development Core Team (2008). An
Introduction to R. R Foundation for Statistical Computing, Vienna, Austria.
[23, 25, 26]

Wakefield, J. C., Kelsall, J. E., and Morris, S. E. (2000). Clustering, cluster
detection and spatial variation in risk. In Elliott, P., Wakefield, J., Best, N.,
and Briggs, D., editors, Spatial Epidemiology: Methods and Applications.
Oxford University Press, Oxford, pp 128–152. [332, 333, 334]

Wall, M. M. (2004). A close look at the spatial structure implied by the CAR
and SAR models. Journal of Statistical Planning and Inference, 121:311–
324. [46, 274]

Waller, L. A. and Gotway, C. A. (2004). Applied Spatial Statistics for Public
Health Data. Wiley, Hoboken, NJ. [7, 13, 57, 82, 90, 91, 114, 155, 160, 163,
164, 171, 173, 174, 237, 239, 240, 241, 243, 259, 262, 265, 266, 268, 270, 271,
272, 274, 278, 283, 296, 300, 306, 311, 313, 314, 321, 332, 335, 339, 345]

Walter, S. D. and Birnie, S. E. (1991). Mapping mortality and morbidity pat-
terns: An international comparison. International Journal of Epidemiology,
20:678–689. [311]

Wang, S. Q. and Unwin, D. J. (1992). Modelling landslide distribution on
loess soils in China: An investigation. International Journal of Geographical
Information Systems, 6:391–405. [117]

Wheeler, D. and Tiefelsdorf, M. (2005). Multicollinearity and correlation
among local regression coefficients in geographically weighted regression.
Journal of Geographical Systems, 7:161–187. [307]

Wikle, C. K. (2003). Hierarchical models in environmental science. Interna-
tional Statistical Review, 71:181–200. [114]

360 References

Wise, S. (2002). GIS Basics. Taylor & Francis, London. [6]
Wood, S. (2006). Generalized Additive Models: An Introduction with R. CRC,

Boca Raton. [180, 233, 297]
Worboys, M. F. and Duckham, M. (2004). GIS: A Computing Perspective.

CRC, Boca Raton, Second Edition. [6, 115]
Yao, T. and Journel, A. G. (1998). Automatic modeling of (cross) correlogram

tables using fast Fourier transform. Mathematical Geology, 30:589–615. [201]
Zeileis, A. (2004). Econometric computing with HC and HAC covariance

matrix estimators. Journal of Statistical Software, 11(10):1–17. [290]

Subject Index

$, see Methods, $
[, see Methods, [
[[, see Methods, [[

adapt, see CRAN, adapt
ade4, see CRAN, ade4
adehabitat, see CRAN, adehabitat
aerial photogrammetry, 21
Akaike’s Information Criterion

(AIC), 281
akima, see CRAN, akima
ArcGIS™, 6, 88, 93, 97, 98, 110, 111,

244
coverage, 88, 93

areal aggregates, 238
areal data, 237, 238
aRT package, 108, 109
as, see Methods, as
ASPRS Grids & Datums, 84
azimuth, 86, 126

BARD, see CRAN, BARD
Bayesian Hierarchical Models,

321–329, 341
bbox, see Methods, bbox
Bioconductor

EBImage, 94
biOps, see CRAN, biOps
boot, see CRAN, boot
boundaries

crisp, 22
indeterminate, 22

Broad Street pump, 104
BRugs, see CRAN, BRugs

Class, 24, 27, 127–142, 144–148
CRS, sp, 29, 84–86
DMS, sp, 86, 87
GDALDataset, rgdal, 95
GDALDriver, rgdal, 95
GridTopology, sp, 48, 49, 175
im, spatstat, 168
Line, sp, 38
Lines, sp, 38
listw, spdep, 251–258, 327
nb, spdep, 240–251, 256, 257,

327
owin, spatstat, 157
Polygon, sp, 42

check hole slot, 122
Polygons, sp, 43

changing ID, 121
POSIXlt, base, 37, 132, 141, 142,

144
ppp, spatstat, 156, 158
Spatial, sp, 28, 29
SpatialGrid, sp, 49, 50

362 Subject Index

SpatialGridDataFrame, sp, 50,
53, 176

SpatialLines, sp, 39, 59
SpatialLinesDataFrame, sp, 39
SpatialPixels, sp, 52, 54, 59
SpatialPixelsDataFrame, sp, 52,

53, 176
SpatialPoints, sp, 30, 31, 156
SpatialPointsDataFrame, sp, 33,

59, 156
SpatialPolygons, sp, 43, 59, 175,

176, 242
dissolve, 122

SpatialPolygonsDataFrame, sp,
44

class intervals, 77–79
Fisher-Jenks, 78
natural breaks, 78, 79
quantiles, 77, 79

classInt, see CRAN, classInt
cluster, see disease cluster
coda, see CRAN, coda
coerce, see Methods, as
cokriging, see geostatistics,

prediction, multivariable
Color Brewer, 76, 77, 332
colour palettes, 76, 77, 332

bpy.colors, 77
cm.colors, 76
grey.colors, 76
heat.colors, 76
rainbow, 76
terrain.colors, 76
topo.colors, 76

Complete Spatial Randomness,
160–162, 172

Comprehensive R Archive Network
(CRAN), 3

computational geometry, 21
coordinate reference systems, 7, 22,

82
datum, 83, 85
ellipsoid, 83
prime meridian, 83

coordinates, 8, 30, 192

geographical, 29, 30, 84, 85, 87
projected, 86

coordinates, see Methods,
coordinates

coordinates<-, see Methods,
coordinates<-

CRAN
adapt, 169
ade4, 240
adehabitat, 107
akima, 233
BARD, 114, 238
biOps, 94
boot, 265
BRugs, 322
classInt, 77
coda, 324, 325, 328–331
DCluster, 91, 316, 317, 333–337,

339, 340
fields, 233, 235
foreign, 93
geoR, 204–206, 235
geoRglm, 235
GeoXp, 108
gpclib, 122
GRASS, 99
gstat, 145, 192, 194–198,

200–203, 205, 206, 208–213,
215–223, 225–228, 230, 232

lme4, 288
lmtest, 289
mapproj, 83
maps, 39, 41, 44, 46, 88
maptools, 44, 90, 93, 107, 108,

110, 121–124, 156–158, 168,
175

MASS, 219, 301, 302
Matrix, 258, 285
mgcv, 180, 182, 233, 297, 299
nlme, 288
PBSmapping, 107
pgirmess, 267
pixmap, 98
R2WinBUGS, 322–325, 328
RandomFields, 205, 227, 234

Subject Index 363

RArcInfo, 41, 88, 93, 243, 244
RColorBrewer, 77, 332
rgdal, 81, 83, 86, 89, 92, 94, 110,

111, 146–148, 159, 243, 244,
338

installation, 111
rimage, 94
RODBC, 110
Rpad, 110
RPyGeo, 111
RSAGA, 110
sandwich, 290
shapefiles, 93
sp, 3, 4, 28, 88, 107, 110, 127,

131–142, 144–148, 192, 217,
220

spam, 258
SparseM, 258
spatial, 156, 195, 233
Spatial Task View, 14
spatialkernel, 156, 175, 187–189
spatstat, 107, 110, 120, 156, 158,

161, 162, 168, 170, 172
spBayes, 287
spdep, 91, 240–259, 261–271,

276, 278, 281–286, 290–295,
297, 298, 303, 305, 327, 335,
336

spgrass6, 99–101, 104–106, 244
spgwr, 306, 307
splancs, 110, 156, 166, 168, 169,

175, 177, 179, 183–186
spsurvey, 120
stinepack, 233
trip, 130–134
tripack, 245

crepuscule, see Methods, crepuscule
CRS, see Class, CRS
CSR, see Complete Spatial

Randomness

Data formats
BIL file, 100
GAL, 256
GeoTiff, 96

Keyhole Markup Language
(KML), 92

Mapgen, 40
Portable Network Graphics

(PNG), 97, 98
PostGIS, 90
raster, 94
shapefile, 89, 90, 93, 100, 120

feature ID, 121
vector, 88

data frames, 25, 35
Data set

Auckland 90m Shuttle Radar
Topography Mission, 50–53,
94, 95, 116–119, 147, 148,
344

Auckland shoreline, 40, 42–44,
344

Biological cell centres, 158, 161,
162, 171, 172, 344

Broad Street cholera mortalities,
104–106, 344

California redwood trees, 158,
161, 162, 166–168, 171, 172,
344

cars, 24–27, 344
CRAN mirrors, 30–37, 344
Japan shoreline, 39, 344
Japanese black pine saplings,

156–158, 161, 162, 171, 172,
344

Lansing Woods maple trees,
169–171, 344

Loggerhead turtle, 37, 132, 134
loggerhead turtle, 345
Manitoulin Island, 47–49, 345
Maunga Whau volcano, 8, 9, 40,

114, 115, 345
Meuse bank, 54, 58–60, 62, 63,

65, 67, 68, 70–72, 74, 76–80,
96–98, 137–140, 192–198,
200–203, 205–213, 216–220,
222, 223, 225, 226, 228, 230,
232, 250, 251, 345

364 Subject Index

New York leukemia, 239,
241–249, 251–257, 260,
262–268, 270–272, 275, 276,
278, 279, 281–283, 285, 286,
288, 290, 291, 293–295,
297–299, 301, 302, 304–307,
345

North Carolina SIDS, 64, 74,
313–319, 321, 323–331,
333–341, 345

North Derbyshire asthma study,
159, 175–180, 182–189, 345

Scottish lip cancer, 90–93, 108,
345

Spearfish, 100, 101, 103, 104,
345

US 1999 SAT scores, 44–46, 345
US Census 1990 Counties,

120–125, 346
world volcano locations, 7, 8,

346
data.frame, 25, 35
DCluster, see CRAN, DCluster
dimensions, 22

2.5D, 23
3D, 22

disease cluster, 332
detection, 332
testing, 333, 337

chi-square test, 333
general clustering, 335
Geographical Analysis

Machine, 337
homogeneity, 333
Kulldorff’s statistic, 338, 339
localised, 340, 341
Moran’s I test, 335
Potthoff-Whittinghill test, 334
scan statistic, 338, 339
spatial autocorrelation, 335
Stone’s test, 340, 341
Tango’s test, 335

disease mapping, 311
DMS, see Class, DMS

EB, see Empirical Bayes
EBImage, see Bioconductor,

EBImage
edit, see Methods, edit
elide, see Methods, elide
ellipsoid, 30

WGS84, 30
Empirical Bayes

estimation, 316–321
local estimation, 319–321
log-normal model, 317
Poisson-Gamma model, 316

empirical cumulative distribution
function, 78

ENVI™, 97
epidemiology

spatial, 173
EPSG geodetic parameter data set,

83
error measurement, 114
error propagation, 115
European Petroleum Survey Group

(EPSG), 83

fields, see CRAN, fields
foreign, see CRAN, foreign

gcDestination, 126
GDALDataset, see Class, GDALDataset
GDALDriver, see Class, GDALDriver
Geary’s C test, see spatial

autocorrelation, tests,
Geary’s C

generalised additive model, 180, 182,
297, 299

generalised linear mixed-effect
model, 301, 302

generalised linear model, 187, 297,
303, 305, 307

generic functions, see Methods
GeoDa, 256
geographical coordinates, see

coordinates, geographical

Subject Index 365

Geographical Information Systems
(GIS), 4, 6, 8, 81, 88, 94,
99, 108

geographically weighted regression,
305–307

geoR, see CRAN, geoR
geoRglm, see CRAN, geoRglm
Geospatial Data Abstraction Library

(GDAL), 81, 94, 111
OGR, 89, 92

geostatistics, 191, 192, 195, 227
anisotropy, 198, 200, 205, 206
conditional simulation, 192, 227

sequential, 145, 227, 228, 230
covariance, 192
isotropy, 196
model diagnostics, 221, 222

cross validation, 222, 223, 225,
226

model-based, 192, 231
monitoring networks, 191,

231–233
multivariable, 192, 206–208
prediction, 192, 209–215

block kriging, 192, 193, 195,
215, 216

domain stratification, 216, 217
indicator kriging, 192, 219,

230
multivariable, 192, 207, 211,

212
ordinary, 209
ordinary kriging, 210
simple, 209, 210
simple kriging, 192, 210
singular matrix errors, 220,

221
universal, 209
universal kriging, 192, 210

semivariance, 192, 195, 196, 198
stationarity, 195, 196, 198
variable transformation, 219,

220
variogram, 192, 195–198,

200–205

cloud, 196, 197
cross, 206–208
cutoff, 200, 201
direction, 200, 205
exploratory, 196–198
lag width, 200, 201
model, 201–206, 208, 209, 230
residual, 208, 209

GeoXp, see CRAN, GeoXp
Getis-Ord G test, see spatial

autocorrelation, tests,
Getis-Ord G

GIS
data models, 8, 22, 88, 94
raster, 48

Global Positioning System (GPS),
22, 82

Global Self-consistent Hierarchical
High-resolution Shoreline
Database (GSHHS), 47, 88

Google Earth™, 6, 21, 92, 97, 98
image overlay, 97, 98
KML, 92

gpclib, see CRAN, gpclib
GRASS

location, 100
Soho, 104
Spearfish, 101

mapset, 100
version 5, 99
version 6, 99

Cygwin, 100
OSX, 100
Windows, 100

window, 99
GRASS, see CRAN, GRASS
GRASS GIS, 99, 104, 244
Great Circle distance, 86, 126
grid, 9, 48, 137–142, 144–148, 250

hexagonal, 137–140
incomplete

neighbours, 250
neighbours, 250

queen, 250
rook, 250

366 Subject Index

processing massive grids,
146–148

simulation results, 145, 146
spatio-temporal, 140–142, 144

GridTopology, see Class,
GridTopology

ground control points, 22
gstat, see CRAN, gstat

habitat, 107

ID matching, 33, 44, 45, 313
im, see Class, im
image, see Methods, image
interpolation, 193

geostatistical, see geostatistics,
prediction

inverse distance weighted, 194,
217

linear regression, 194
trend surface, 195

John Snow, 104
join count test, see spatial

autocorrelation, tests, join
count

kriging, see geostatistics, prediction

lag
spatial, 257

lattice graphics, 68
levelplot, 69
Line, see Class, Line
line generalisation, 41
linear model, 263, 270, 275, 276, 279,

290, 297, 303, 305–307
heteroskedasticity, 289, 290
multicollinearity, 276, 291
residuals, 263, 270, 275, 276,

279, 281, 290
weighted, 279, 281

Lines, see Class, Lines
lines, 8, 38
lines, see Methods, lines
listw, see Class, listw

lme4, see CRAN, lme4
lmtest, see CRAN, lmtest
longlat, 29, 31, 84

mailing list, see R-Sig-Geo mailing
list

Mantel general cross product test,
see spatial autocorrelation,
tests, Mantel

map class intervals, 77
map colours, 67, 76, 77, 332
map grids, 64
map north arrow, 63
map plotting, 57
map scale bar, 63
map symbols, 67
Mapgen, see Data formats, Mapgen
mapproj, see CRAN, mapproj
maps, see CRAN, maps
Mapserver, 110
maptools, see CRAN, maptools
MASS, see CRAN, MASS, see

CRAN, MASS
mathematical geography, 21
Matlab™, 256
Matrix, see CRAN, Matrix
memory management, 10, 146–148
Methods, 23, 127–142, 144–148

$, 34, 133
[, 32, 46, 133, 147, 148
[[, 34, 133
as, 28, 53, 55, 58, 72, 86, 88, 97,

107, 122, 139, 157, 158, 176,
178

bbox, 31
coordinates, 32
coordinates<-, 36, 59
crepuscule, 126
edit, 244
elide, 126, 158
image, 57, 59, 60, 67, 79, 98
lines, 57
names, 35
overlay, 33, 97, 105, 116, 117,

119, 176, 217

Subject Index 367

plot, 33, 57, 59, 60, 67, 79
points, 57
predict, 194
print, 33
proj4string, 31, 121
proj4string<-, 32
solarnoon, 126
solarpos, 126
spCbind, 90, 124
spChFIDs, 121
spplot, 57, 69–72, 76, 80, 192
spRbind, 123
spsample, 33, 118, 119, 137–140,

216
spTransform, 64, 86, 91, 97, 338
subset, 144, 241, 255
summary, 33
sunriset, 126

mgcv, see CRAN, mgcv
missing values, 255
misspecification, 238, 259–261, 263,

271–273, 276
modifiable areal unit problem, 237
Mondrian, 108
Moran’s I test, see spatial

autocorrelation, tests,
Moran’s I

names, see Methods, names
nb, see Class, nb
neighbours

spatial, 238, 240–248, 250, 256,
259

grid, 250
higher order, 249
points, 245–249
polygons, 242–244
sets, 238

nlme, see CRAN, nlme

Oil & Gas Producers (OGP)
Surveying & Positioning
Committee, 83

Open Source Geospatial Foundation
(OSGeo), 81, 99

OpenGIS®
simple features, 42, 89, 122

overlay, see Methods, overlay
owin, see Class, owin

PBSmapping, see CRAN,
PBSmapping

pgirmess, see CRAN, pgirmess
pixmap, see CRAN, pixmap
plot, see Methods, plot
plotting maps, 57

axes, 60–62, 64
point pattern

binary regression estimator, 179,
180

bounding region, 155
case–control, 173–176, 179, 180,

186–188
clustered, 160, 184
definition, 155
intensity, 163, 165
kernel bandwidth, 166, 167, 174,

175, 178, 179
kernel density, 165, 166, 174, 175
kernel density ratio, 174, 175,

178, 179
marked, 158, 173
regular, 160

point pattern analysis, 155
point process

F function, 162
G function, 161
K function, 171, 172, 185

inhomogeneous, 172, 173,
186–189

definition, 155
homogeneous, 164
inhomogeneous, 165
isotropic, 164
K function, 171
likelihood, 168
second-order properties, 171
stationary, 164

point source pollution, 182–184
point-in-polygon problem, 116

368 Subject Index

points, 8, 30, 192
2D, 30
3D, 31, 140
multi-point data, 134–136
neighbours, 244–249

k-nearest, 244, 246
distance bands, 244, 247–250
Gabriel, 245
graph measures, 244, 245
higher order, 249
relative, 245
sphere of influence, 245
triangulation, 245

points, see Methods, points
Poisson-Gamma model, 315, 322–325
Polygon, see Class, Polygon
Polygons, see Class, Polygons
polygons, 8, 42, 237, 238

centroid, 244
clean topology, 244

snap, 244
contiguous neighbours, 242, 243,

249
higher order, 249
queen, 242, 243
rook, 243, 244

dissolve, 122, 124
hole, 42, 46, 47, 122, 237
plot order, 43, 47
ring direction, 42, 46, 47
topology, 46

POSIXlt, see Class, POSIXlt
ppp, see Class, ppp
predict, see Methods, predict
print, see Methods, print
probability map , 316
PROJ.4 Cartographic Projections

library, 81, 84, 111
tags, 84

ellps, 84, 86
init, 84
proj, 84, 86
towgs84, 84

proj4string, see Methods,
proj4string

proj4string<-, see Methods,
proj4string<-

Python, 110, 111
ArcRstats, 110
MGET, 111

quadtree, 215
Quantum GIS, 99

R-Geo website, 14
R-Sig-Geo mailing list, 14
R2WinBUGS, see CRAN,

R2WinBUGS
raised incidence, 183, 184
random fields, 192, 227
RandomFields, see CRAN,

RandomFields
RArcInfo, see CRAN, RArcInfo
RColorBrewer, see CRAN,

RColorBrewer
remote sensing, 21, 48

multi-spectral images, 21
rgdal, see CRAN, rgdal
rimage, see CRAN, rimage
RODBC, see CRAN, RODBC
row names, 26
Rpad, see CRAN, Rpad
RPyGeo, see CRAN, RPyGeo
RSAGA, see CRAN, RSAGA

S-Plus™
SpatialStats module, 256

sampling
spatial, see spatial sampling

sandwich, see CRAN, sandwich
shapefile, see Data formats, shapefile
shapefiles, see CRAN, shapefiles
Shuttle Radar Topography Mission,

21, 50
simultaneous autoregression, 257

simulation, 257
solar noon, 126
solar position, 126
solarnoon, see Methods, solarnoon
solarpos, see Methods, solarpos

Subject Index 369

sp.layout, argument to spplot, 72
spam, see CRAN, spam
SparseM, see CRAN, SparseM
Spatial, see Class, Spatial
spatial, see CRAN, spatial
spatial autocorrelation, 238, 257,

273, 274
correlogram, 267
local tests, 268–272

Moran’s I, 269–272
misspecification, 238, 259–261,

263, 271–273, 276
Moran scatterplot, 268, 269
over-dispersion, 271
tests, 238, 259–269, 271, 272,

276, 281
Empirical Bayes Moran’s I,

266
exact, 264, 270
Geary’s C, 261
Getis-Ord G, 261
join count, 261
Lagrange Multiplier, 290–292
Mantel, 261
Monte Carlo, 261, 264, 266
Moran’s I, 259–264, 276, 281,

298, 335
Normality assumption, 261,

263, 270
parametric bootstrap, 261,

265, 271, 272
permutation bootstrap, 261,

264, 266
Randomisation assumption,

262, 270
rates, 265, 266, 270–272
Saddlepoint approximation,

264, 270
Spatial Econometrics Library, 256
spatial epidemiology, 311
spatial lag, see lag, spatial
spatial models, 273–277, 279, 297,

301–303, 305–307
Common Factor, 293

conditional autoregressive
(CAR), 274, 282, 283,
325–329

generalised additive model, 297,
299

generalised estimating
equations, 300

generalised linear mixed-effect
model, 301, 302

generalised linear model, 297,
303, 305

geographically weighted
regression, 305–307

Jacobian, 284–286
eigenvalues, 284
sparse matrix representation,

285
likelihood ratio test, 279
log likelihood, 285, 286
mixed-effects models, 287–289
Moran eigenvector, 302, 303, 305
simultaneous autoregressive

(SAR), 274, 277–279, 281,
285, 286

simultaneous moving average
(SMA), 286

small area estimation, 287, 289
spatial Durbin, 291, 292
spatial econometrics, 289, 290
spatial error, 291, 293

GM estimator, 295, 296
spatial filtering, 302, 303
spatial lag, 291, 292

2SLS, 294, 295
spatial neighbours, see neighbours,

spatial
spatial queries, 116, 117
spatial sampling, 118, 216
Spatial Task View, see CRAN,

Spatial Task View
spatial weights, see weights, spatial
SpatialGrid, see Class, SpatialGrid
SpatialGridDataFrame, see Class,

SpatialGridDataFrame

370 Subject Index

spatialkernel, see CRAN,
spatialkernel

SpatialLines, see Class,
SpatialLines

SpatialLinesDataFrame, see Class,
SpatialLinesDataFrame

SpatialPixels, see Class,
SpatialPixels

SpatialPixelsDataFrame, see Class,
SpatialPixelsDataFrame

SpatialPoints, see Class,
SpatialPoints

SpatialPointsDataFrame, see Class,
SpatialPointsDataFrame

SpatialPolygons, see Class,
SpatialPolygons

SpatialPolygonsDataFrame, see Class,
SpatialPolygonsDataFrame

spatstat, see CRAN, spatstat
spBayes, see CRAN, spBayes
spCbind, see Methods, spCbind
spChFIDs, see Methods, spChFIDs
spdep, see CRAN, spdep
spgrass6, see CRAN, spgrass6
spgwr, see CRAN, spgwr
splancs, see CRAN, splancs
spplot, see Methods, spplot
spRbind, see Methods, spRbind
spsample, see Methods, spsample
spsurvey, see CRAN, spsurvey
spTransform, see Methods,

spTransform

standardisation
indirect, 313
internal, 313

Standardised Mortality Ratio, 314,
315

Stata™, 108, 256
tmap, 108

StatConnector (D)COM mechanism,
110

stinepack, see CRAN, stinepack
subset, see Methods, subset
summary, see Methods, summary
sunrise, 126

sunriset, see Methods, sunriset
sunset, 126
support, 113, 115, 237

change of, 114, 215, 216
TerraLib, 108, 109

R interface, 108, 109
thematic maps, 67
trellis graphics, see lattice graphics
triangulation, 83
trip, see CRAN, trip
tripack, see CRAN, tripack

uncertainty, 22, 115, 227

visualisation, 10
visualising spatial data, 57

weights
spatial, 238, 251–256, 259, 327

asymmetric, 284, 285
binary, 251–253
generalised, 253, 254
no-neighbour areal entities,

254, 255, 262
row standardised, 252
similar to symmetric, 285
sparse matrix representation,

285
styles, 252, 253
symmetric, 282, 285
unknown, 257
variance-stabilising, 253
zero policy, 254

WinBUGS, 322–329, 341
GeoBUGS polygon import, 108
GeoBUGS weights import, 256

zero policy, see weights, spatial, zero
policy

Functions Index

$ method, sp, 34, 133
[method, sp, 32, 46, 133, 147, 148
[[method, sp, 34, 133

achisq.test, DCluster, 333
adapt, adapt, 169
anova.sarlm, spdep, 292
as.geodata, geoR, 204
as.spam.listw, spdep, 258
as.vgm.variomodel, gstat, 204
as_dgRMatrix_listw, spdep, 258
axis, graphics, 60

bbox method, sp, 31
boot, boot, 265
boxcox, MASS, 219
bptest, lmtest, 289
bptest.sarlm, spdep, 291
bpy.colors, sp, 77
brewer.pal, RColorBrewer, 77
bugs, R2WinBUGS, 323–325, 328

calculate.mle, DCluster, 339
card, spdep, 240, 250, 251
cell2nb, spdep, 250
char2dms, sp, 86, 87
checkPolygonsHoles, maptools, 122
classIntervals, classInt, 77
cm.colors, grDevices, 76
coeftest, lmtest, 290

colorRampPalette, grDevices, 76
ContourLines2SLDF, maptools, 40, 72,

178
coordinates method, sp, 32
cor, stats, 207
correlog, pgirmess, 267
corSpatial, nlme, 288
cover.design, fields, 233
create2GDAL, rgdal, 96
crepuscule method, maptools, 126
CRS, sp, 29, 31, 32, 64, 84–86, 90, 91,

96, 97

dd2dms, sp, 86, 87
density, spatstat, 168
dnearneigh, spdep, 247, 250, 267, 336

EBest, spdep, 318
EBImoran.mc, spdep, 266
EBlocal, spdep, 319
ecdf, stats, 78
edit.nb, spdep, 244
eigen, base, 284
eigenw, spdep, 284, 285
elide method, maptools, 126, 158
empbaysmooth, DCluster, 91, 316
envelope, spatstat, 161, 162, 172
errorsarlm, spdep, 293
eyefit, geoR, 204

372 Functions Index

Fest, spatstat, 162
findColours, classInt, 78
fit.lmc, gstat, 206–208
fit.variogram, gstat, 203, 205, 208,

209, 222, 230
fit.variogram.reml, gstat, 205
fitvario, RandomFields, 205

gabrielneigh, spdep, 245
gam, mgcv, 180, 182, 297, 299
gcDestination, maptools, 126
GDAL.close, rgdal, 95
GDAL.open, rgdal, 95
GDALinfo, rgdal, 95, 96
GE_SpatialGrid, maptools, 97
geary.test, spdep, 261
Gest, spatstat, 161
getDriverLongName, rgdal, 95
getinfo.shape, maptools, 93
geweke.diag, coda, 330
ggwr, spgwr, 307
ggwr.sel, spgwr, 307
glm, stats, 187, 265, 297, 303, 305
glmmPQL, MASS, 301, 302
globalG.test, spdep, 261
GMerrorsar, spdep, 295
gmeta2grd, spgrass6, 104
gmeta6, spgrass6, 100
graph2nb, spdep, 245
grey.colors, grDevices, 76
grid.locator, grid, 76
gridat, sp, 64
gridlines, sp, 64
GridTopology, sp, 48, 49
gstat, gstat, 206, 208, 209, 213, 215,

218
gstat.cv, gstat, 225
gwr, spgwr, 306
gwr.sel, spgwr, 306
gzAzimuth, maptools, 86, 126

heat.colors, grDevices, 76
hscat, gstat, 196

I, base, 195
identify, graphics, 74

idw, gstat, 97, 194, 217
image method, sp, 57, 59, 60, 67, 79,

98
include.self, spdep, 336
influence.measures, stats, 269
invIrW, spdep, 257
is.symmetric.nb, spdep, 246

joincount.multi, spdep, 261
joincount.test, spdep, 261

Kest, spatstat, 172
khat, splancs, 185, 186
khvmat, splancs, 185
kinhat, spatialkernel, 188, 189
kmlOverlay, maptools, 98
knearneigh, spdep, 246
knn2nb, spdep, 246
krige, gstat, 145, 194, 195, 210,

215–217, 219–222, 226, 228,
230, 232

krige.cv, gstat, 223, 226

lag.listw, spdep, 257, 270, 271
lagsarlm, spdep, 291, 292
lambdahat, spatialkernel, 175,

187–189
layout, graphics, 66
layout.north.arrow, sp, 63
layout.scale.bar, sp, 63
legend, graphics, 67
levelplot, lattice, 69
likfit, geoR, 205, 206
Line, sp, 38
Lines, sp, 38
lines method, sp, 57
listw2mat, spdep, 256, 257
listw2sn, spdep, 256
listw2U, spdep, 258
listw2WB, spdep, 256, 327
lm, stats, 129, 192, 194, 195, 263,

275, 276, 279, 290, 303
lm.LMtests, spdep, 290, 291
lm.morantest, spdep, 259, 263, 276,

281, 297, 298

Functions Index 373

lm.morantest.exact, spdep, 264
lm.morantest.sad, spdep, 264
lme, nlme, 288, 289
localmoran, spdep, 270
localmoran.exact, spdep, 270
localmoran.sad, spdep, 270
locator, graphics, 67, 74, 75
lognormalEB, DCluster, 317

make_EPSG, rgdal, 83
map, maps, 39, 44, 64
map2SpatialLines, maptools, 39, 64
map2SpatialPolygons, maptools, 44,

88
MapGen2SL, maptools, 40
mat2listw, spdep, 257
ME, spdep, 303, 305
moran, spdep, 265
moran.mc, spdep, 264
moran.plot, spdep, 268, 269
moran.test, spdep, 259, 262, 263, 267
moranI.test, DCluster, 335
mse2d, splancs, 166

n.comp.nb, spdep, 246
nb2lines, spdep, 257
nb2listw, spdep, 251–254, 257, 259,

262–265, 270, 276, 278, 290,
335, 336

nb2WB, spdep, 327
nbdists, spdep, 247, 248, 254, 336
nblag, spdep, 249, 267
nclass.Sturges, grDevices, 77
neig2nb, ade4, 240

ogrDrivers, rgdal, 89
opgam, DCluster, 337, 339
optim, stats, 169
optimize, stats, 284
overlay method, sp, 75, 97, 105,

116–119, 176, 217
owin, spatstat, 107

pal2SpatialPolygons,maptools, 88
panel.identify, lattice, 76
par, graphics, 61, 65

plot method, sp, 57, 59, 60, 67, 79
plot method, classInt, 78
points method, sp, 57
poly, stats, 195
poly2nb, spdep, 242, 243
Polygon, sp, 42
Polygons, sp, 43
pottwhitt.test, DCluster, 334
ppm, spatstat, 170
ppp, spatstat, 107
predict method, gstat, 211–213, 215,

218, 230
probmap, spdep, 91
proj4string method, sp, 31, 121
pruneMap, maptools, 64

rainbow, grDevices, 76
read.coda, coda, 329
read.dat2listw, spdep, 256
read.gal, spdep, 241, 256, 313
read.gwt2nb, spdep, 256
read.shape, maptools, 93
readAsciiGrid, maptools, 98
readGDAL, rgdal, 94, 95
readOGR, rgdal, 90, 159, 241, 243
readRAST6, spgrass6, 101, 105
readShapeLines, maptools, 93
readShapePoints, maptools, 93
readShapePoly, maptools, 75, 93, 313
readVECT6, spgrass6, 103, 105, 106
relativeneigh, spdep, 245
Rgshhs, maptools, 88

Sobj_SpatialGrid, maptools, 168, 175
soi.graph, spdep, 245
solarnoon method, maptools, 126
solarpos method, maptools, 126
sp.correlogram, spdep, 267
sp.mantel.mc, spdep, 261
sp2Mondrian, maptools, 108
sp2tmap, maptools, 108
sp2WB, maptools, 108
Spatial, sp, 29
SpatialFiltering, spdep, 303
SpatialGrid, sp, 49, 50

374 Functions Index

SpatialGridDataFrame, sp, 50, 176
SpatialLines, sp, 39, 59
SpatialLines2PolySet, maptools, 107
SpatialLinesDataFrame, sp, 39
SpatialPixels, sp, 52, 54, 59
SpatialPixelsDataFrame, sp, 52
SpatialPoints, sp, 31, 86, 337
SpatialPointsDataFrame, sp, 33
SpatialPolygons, sp, 43, 59
SpatialPolygons2PolySet,maptools,

107
SpatialPolygonsDataFrame, sp, 44, 45
spautolm, spdep, 278, 282–286
spCbind method, maptools, 90, 125
spChFIDs method, maptools, 121
spDistsN1, sp, 86
spkernel2d, splancs, 168, 175, 177,

179
spmap.to.lev, sp, 69
spplot method, sp, 57, 69–72, 76, 80,

192
spplot.locator, sp, 76
spRbind method, maptools, 123
spsample method, sp, 118, 119,

137–140, 216
spTransform method, rgdal, 64, 86,

91, 97
stone.stat, DCluster, 340
stone.test, DCluster, 340
stsls, spdep, 294, 295
subset.listw, spdep, 255
subset.nb, spdep, 241, 255
sunriset method, maptools, 126
surf.ls, spatial, 195
system, base, 100, 111

Szero, spdep, 265

tango.test, DCluster, 336
terrain.colors, grDevices, 76
topo.colors, grDevices, 76
Tps, fields, 233
tri2nb, spdep, 245
tribble, splancs, 183, 184

unionSpatialPolygons, maptools, 97,
122, 125

variog, geoR, 204
variogram, gstat, 196–198, 200, 201,

203, 205, 206, 208, 209, 230
vcovHC, sandwich, 290
vect2neigh, spgrass6, 104, 244
vgm, gstat, 145, 201–203, 205, 208,

209, 223, 225, 230
vInfo, spgrass6, 103

write.dta, foreign, 256
write.nb.gal, spdep, 256
write.sn2dat, spdep, 256
write.sn2gwt, spdep, 256
writeAsciiGrid, maptools, 98
writeGDAL, rgdal, 96
writeLinesShape, maptools, 93
writeOGR, rgdal, 92, 93
writePointsShape, maptools, 93
writePolyShape, maptools, 93
writeRAST6, spgrass6, 103
writeVECT6, spgrass6, 103, 244

zerodist, sp, 220

springer.com

Model-based Geostatiatics

Peter J. Diggle and Paulo Justiniano Ribeiro

This volume is the first book-length treatment of model-based
geostatistics. The text is expository, emphasizing statistical methods
and applications rather than the underlying mathematical theory.
Analyses of datasets from a range of scientific contexts feature
prominently, and simulations are used to illustrate theoretical results.
Readers can reproduce most of the computational results in the book
by using the authors' software package, geoR, whose usage is
illustrated in a computation section at the end of each chapter. The
book assumes a working knowledge of classical and Bayesian
methods of inference, linear models, and generalized linear models.

2007. 230 pp. (Springer Series in Statistics) Hardcover
ISBN 978-0-387-32907-9

Software for Data Analysis
Programming with R

John M. Chambers

This book guides the reader through programming with R, beginning
with simple interactive use and progressing by gradual stages,
starting with simple functions. More advanced programming tech-
niques can be added as needed, allowing users to grow into software
contributors, benefiting their careers and the community. R packages
provide a powerful mechanism for contributions to be organized and
communicated.

2008. Approx. 510 pp. (Statistics and Computing) Hardcover
ISBN 978-0-387-75935-7

Data Manipulation with R

Phil Spector

This book presents a wide array of methods applicable for reading
data into R, and efficiently manipulating that data. In addition to the
built-in functions, a number of readily available packages from CRAN
(the Comprehensive R Archive Network) are also covered. All of the
methods presented take advantage of the core features of R:
vectorization, efficient use of subscripting, and the proper use of the
varied functions in R that are provided for common data management
tasks.

2008. 164 pp. (Use R) Softcover
ISBN 978-0-387-74730-9

Easy Ways to Order Call: Toll-Free 1-800-SPRINGER E-mail: orders-ny@springer.com Write:
Springer, Dept. S8113, PO Box 2485, Secaucus, NJ 07096-2485 Visit: Your
local scientific bookstore or urge your librarian to order.

